Coordinating the motions of multiple robots with kinodynamic constraints

This paper focuses on the coordination of multiple robots with kinodynamic constraints along specified paths. The presented approach generates continuous velocity profiles that avoid collisions and minimize the completion time for the robots. The approach identifies collision segments along each robot's path and then optimizes the motions of the robots along their collision and collision-free segments. For each path segment for each robot, the minimum and maximum possible traversal times that satisfy the dynamics constraints are computed by solving the corresponding two-point boundary value problems. Then the collision avoidance constraints for pairs of robots can be combined to formulate a mixed integer nonlinear programming (MINLP) problem. Since this nonconvex MINLP model is difficult to solve, we describe two related mixed integer linear programming (MILP) formulations that provide schedules that are lower and upper bounds on the optimum; the upper bound schedule is a continuous velocity schedule. The approach is illustrated with robots modeled as double integrators subject to velocity and acceleration constraints. An implementation that coordinates 12 nonholonomic car-like robots is described.

[1]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[2]  Jean-Claude Latombe,et al.  Kinodynamic motion planning amidst moving obstacles , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[3]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[4]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[5]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1998, IEEE Trans. Robotics Autom..

[6]  B. Donald,et al.  Kinodynamic Motion Planning 1 Kinodynamic Motion Planning 5 , 1993 .

[7]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[8]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[9]  Dinesh Manocha,et al.  Fast distance queries with rectangular swept sphere volumes , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[11]  Steven Dubowsky,et al.  On computing the global time-optimal motions of robotic manipulators in the presence of obstacles , 1991, IEEE Trans. Robotics Autom..

[12]  Srinivas Akella,et al.  Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths , 2005, Int. J. Robotics Res..

[13]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[14]  Myung Jin Chung,et al.  Collision avoidance of two general robot manipulators by minimum delay time , 1994, IEEE Trans. Syst. Man Cybern..

[15]  Micha Sharir,et al.  Motion planning in the presence of moving obstacles , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[16]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[17]  Antonio Bicchi,et al.  Conflict resolution problems for air traffic management systems solved with mixed integer programming , 2002, IEEE Trans. Intell. Transp. Syst..

[18]  Seth Hutchinson,et al.  Coordinating the motions of multiple robots with specified trajectories , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[20]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 2005, Algorithmica.

[21]  Tomás Lozano-Pérez,et al.  Deadlock-free and collision-free coordination of two robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[22]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[23]  Bruce Randall Donald,et al.  Kinodynamic motion planning , 1993, JACM.

[24]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[25]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[26]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[27]  Jean-Claude Latombe,et al.  Using a PRM planner to compare centralized and decoupled planning for multi-robot systems , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[28]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[29]  S. Shankar Sastry,et al.  Generation of conflict resolution manoeuvres for air traffic management , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[30]  Toms Lozano-Pfrez On Multiple Moving Objects DTlC IELECTE ( 0 , 2022 .

[31]  Ralph L. Hollis,et al.  Distributed Coordination in Modular Precision Assembly Systems , 2001, Int. J. Robotics Res..

[32]  B. Moor,et al.  Mixed integer programming for multi-vehicle path planning , 2001, 2001 European Control Conference (ECC).

[33]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[34]  Kang G. Shin,et al.  Minimum-time collision-free trajectory planning for dual-robot systems , 1992, IEEE Trans. Robotics Autom..

[35]  J. Davenport Editor , 1960 .

[36]  John M. Hollerbach,et al.  Planning of Minimum- Time Trajectories for Robot Arms , 1986 .

[37]  Rachid Alami,et al.  Multi-robot cooperation in the MARTHA project , 1998, IEEE Robotics Autom. Mag..

[38]  Thierry Fraichard,et al.  Trajectory planning in a dynamic workspace: a 'state-time space' approach , 1998, Adv. Robotics.

[39]  Jihong Lee,et al.  A minimum-time trajectory planning method for two robots , 1992, IEEE Trans. Robotics Autom..

[40]  Mark H. Overmars,et al.  Coordinated motion planning for multiple car-like robots using probabilistic roadmaps , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[41]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.