On measuring the accuracy of SLAM algorithms

In this paper, we address the problem of creating an objective benchmark for evaluating SLAM approaches. We propose a framework for analyzing the results of a SLAM approach based on a metric for measuring the error of the corrected trajectory. This metric uses only relative relations between poses and does not rely on a global reference frame. This overcomes serious shortcomings of approaches using a global reference frame to compute the error. Our method furthermore allows us to compare SLAM approaches that use different estimation techniques or different sensor modalities since all computations are made based on the corrected trajectory of the robot.We provide sets of relative relations needed to compute our metric for an extensive set of datasets frequently used in the robotics community. The relations have been obtained by manually matching laser-range observations to avoid the errors caused by matching algorithms. Our benchmark framework allows the user to easily analyze and objectively compare different SLAM approaches.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Wolfram Burgard,et al.  Robust Monte-Carlo Localization Using Adaptive Likelihood Models , 2006, EUROS.

[3]  Sebastian Thrun,et al.  A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots , 2001, Int. J. Robotics Res..

[4]  Michael Bosse,et al.  An Atlas framework for scalable mapping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[5]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[6]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[7]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[8]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[9]  Wolfram Burgard,et al.  Analyzing gaussian proposal distributions for mapping with rao-blackwellized particle filters , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[11]  Frank Dellaert,et al.  Square Root SAM , 2005, Robotics: Science and Systems.

[12]  Maria L. Gini,et al.  Good Experimental Methodologies for Robotic Mapping: A Proposal , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[13]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[15]  Joachim Hertzberg,et al.  Benchmarking urban six‐degree‐of‐freedom simultaneous localization and mapping , 2008, J. Field Robotics.

[16]  Udo Frese Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping , 2006, Auton. Robots.

[17]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[18]  Frank Dellaert,et al.  iSAM: Fast Incremental Smoothing and Mapping with Efficient Data Association , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[19]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[20]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[21]  Wolfram Burgard,et al.  A Tree Parameterization for Efficiently Computing Maximum Likelihood Maps using Gradient Descent , 2007, Robotics: Science and Systems.

[22]  Juan D. Tardós,et al.  Hierarchical SLAM: real-time accurate mapping of large environments , 2005, IEEE Transactions on Robotics.

[23]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[24]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[25]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[26]  Wolfram Burgard,et al.  Dense Mapping for Range Sensors: Efficient Algorithms and Sparse Representations , 2008 .

[27]  Christian Früh,et al.  An Automated Method for Large-Scale, Ground-Based City Model Acquisition , 2004, International Journal of Computer Vision.

[28]  Hyoukryeol Choi,et al.  Differential-drive in-pipe robot for moving inside urban gas pipelines , 2005, IEEE Transactions on Robotics.

[29]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[30]  Matthew R. Walter,et al.  Sparse extended information filters: insights into sparsification , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Christian Laugier,et al.  Towards motion autonomy of a bi-steerable car: experimental issues from map-building to trajectory execution , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[32]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[33]  Andrea Censi,et al.  Scan matching in a probabilistic framework , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[34]  Frank Dellaert,et al.  Loopy SAM , 2007, IJCAI.

[35]  S. Balakirsky,et al.  Towards Quantitative Comparisons of Robot Algorithms : Experiences with SLAM in Simulation and Real World Systems , 2007 .

[36]  Wolfram Burgard,et al.  Efficient estimation of accurate maximum likelihood maps in 3D , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Sebastian Thrun,et al.  An Online Mapping Algorithm for Teams of Mobile Robots , 2000 .

[39]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Hugh F. Durrant-Whyte,et al.  A computationally efficient solution to the simultaneous localisation and map building (SLAM) problem , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[41]  Sebastian Thrun Winning the DARPA grand challenge , 2006 .

[42]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[43]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[44]  A. Nuchter,et al.  6D SLAM with approximate data association , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[45]  Edwin Olson,et al.  Robust and efficient robotic mapping , 2008 .

[46]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[47]  Wolfram Burgard,et al.  A comparison of SLAM algorithms based on a graph of relations , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[49]  Wolfram Burgard,et al.  Large scale graph-based SLAM using aerial images as prior information , 2009, Robotics: Science and Systems.

[50]  Joachim Hertzberg,et al.  Benchmarking urban six-degree-of-freedom simultaneous localization and mapping , 2008 .

[51]  Stephen R. Marsland,et al.  Fast, On-Line Learning of Globally Consistent Maps , 2002, Auton. Robots.

[52]  Tom Duckett,et al.  A multilevel relaxation algorithm for simultaneous localization and mapping , 2005, IEEE Transactions on Robotics.