A Gentle Introduction to NUMERICA

Abstract Numerica is a modeling language for stating and solving global optimization problems. It makes it possible to express these problems in a notation close to the way these problems are stated in textbooks or scientific papers. In addition, the constraint-solving algorithm of Numerica , which combines techniques from numerical analysis and artificial intelligence, provides many guarantees about correctness, convergence, and completeness. This paper is a gentle introduction to Numerica . It highlights some of the main difficulties of global optimization and illustrates the functionality of Numerica by contrasting it to traditional methods. It also presents the essence of the constraint-solving algorithm of Numerica in a novel, high-level, way.

[1]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[2]  Jon G. Rokne,et al.  Experiments using interval analysis for solving a circuit design problem , 1993, J. Glob. Optim..

[3]  A. Neumaier Interval methods for systems of equations , 1990 .

[4]  G. Nemhauser,et al.  Integer Programming , 2020 .

[5]  R. B. Kearfott,et al.  A Review of Preconditioners for the Interval Gauss–Seidel Method , 2000 .

[6]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[7]  E. Hansen,et al.  Interval Arithmetic in Matrix Computations, Part II , 1965 .

[8]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[9]  E. Hansen,et al.  An interval Newton method , 1983 .

[10]  Ramon E. Moore,et al.  SAFE STARTING REGIONS FOR ITERATIVE METHODS , 1977 .

[11]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[12]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[13]  J. Ebers,et al.  Large-Signal Behavior of Junction Transistors , 1954, Proceedings of the IRE.

[14]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[15]  S. Rump Verification methods for dense and sparse systems of equations , 1994 .

[16]  Ulrich Kulisch,et al.  Numerical Toolbox for Verified Computing I: Basic Numerical Problems Theory, Algorithms, and Pascal-Xsc Programs , 1994 .

[17]  Eugene C. Freuder,et al.  The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems , 1985, Artif. Intell..

[18]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[19]  Ronald R. Willis,et al.  New Computer Methods for Global Optimization , 1990 .

[20]  Pascal Van Hentenryck,et al.  Strategic directions in constraint programming , 1996, CSUR.

[21]  André Vellino,et al.  Constraint Arithmetic on Real Intervals , 1993, WCLP.

[22]  Alain Colmerauer,et al.  Constraint logic programming: selected research , 1993 .

[23]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[25]  David A. McAllester,et al.  Solving Polynomial Systems Using a Branch and Prune Approach , 1997 .

[26]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[27]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[28]  Frédéric Benhamou,et al.  Applying Interval Arithmetic to Real, Integer, and Boolean Constraints , 1997, J. Log. Program..

[29]  O.P.D. Cutteridge Powerful 2-part program for solution of nonlinear simultaneous equations , 1974 .

[30]  James Renegar,et al.  A faster PSPACE algorithm for deciding the existential theory of the reals , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[31]  E. Hansen,et al.  Bounding solutions of systems of equations using interval analysis , 1981 .

[32]  Pascal Van Hentenryck,et al.  CLP(Intervals) Revisited , 1994, ILPS.

[33]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[34]  R. Baker Kearfott,et al.  Preconditioners for the interval Gauss-Seidel method , 1990 .

[35]  Pascal Van Hentenryck,et al.  Numerica: A Modeling Language for Global Optimization , 1997, IJCAI.

[36]  R. Baker Kearfott,et al.  A Review of Techniques in the Verified Solution of Constrained Global Optimization Problems , 1996 .

[37]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..