Smoothing parameter selection for a class of semiparametric linear models

Spline-based approaches to non-parametric and semiparametric regression, as well as to regression of scalar outcomes on functional predictors, entail choosing a parameter controlling the extent to which roughness of the fitted function is penalized. We demonstrate that the equations determining two popular methods for smoothing parameter selection, generalized cross-validation and restricted maximum likelihood, share a similar form that allows us to prove several results which are common to both, and to derive a condition under which they yield identical values. These ideas are illustrated by application of functional principal component regression, a method for regressing scalars on functions, to two chemometric data sets. Copyright (c) 2009 Royal Statistical Society.

[1]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[2]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[3]  Brian D. Marx,et al.  Generalized Linear Regression on Sampled Signals and Curves: A P-Spline Approach , 1999, Technometrics.

[4]  Brian D Marx,et al.  Generalized Linear Additive Smooth Structures , 2002 .

[5]  P. Reiss Regression with Signals and Images as Predictors , 2006 .

[6]  M. Wand,et al.  Semiparametric Regression: Parametric Regression , 2003 .

[7]  D. Ruppert,et al.  Likelihood ratio tests in linear mixed models with one variance component , 2003 .

[8]  J. Nelder,et al.  Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood , 2006 .

[9]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[10]  C. Crainiceanu,et al.  Fast Adaptive Penalized Splines , 2008 .

[11]  D. Cox Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[12]  G. Wahba Spline models for observational data , 1990 .

[13]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[14]  M. Kenward,et al.  The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines , 1999 .

[15]  Steven G. Gilmour,et al.  The analysis of designed experiments and longitudinal data by using smoothing splines - Discussion , 1999 .

[16]  D. Bates,et al.  Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data , 1988 .

[17]  J. Kalivas Two data sets of near infrared spectra , 1997 .

[18]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[19]  Hervé Cardot,et al.  Spatially Adaptive Splines for Statistical Linear Inverse Problems , 2002 .

[20]  S. C. Kou From finite sample to asymptotics: A geometric bridge for selection criteria in spline regression , 2004 .

[21]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[22]  G. Kauermann A note on smoothing parameter selection for penalized spline smoothing , 2005 .

[23]  Grace Wahba,et al.  Testing the (Parametric) Null Model Hypothesis in (Semiparametric) Partial and Generalized Spline Models , 1988 .

[24]  Trevor Hastie,et al.  Degrees‐of‐freedom tests for smoothing splines , 2002 .

[25]  P. Reiss,et al.  Functional Principal Component Regression and Functional Partial Least Squares , 2007 .

[26]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[27]  Y. Pawitan In all likelihood , 2001 .