Micro-Optics and Energy: Sensors for Energy Devices

[1]  Lawrence Pitt,et al.  Biohydrogen production: prospects and limitations to practical application , 2004 .

[2]  Jaephil Cho,et al.  Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries , 2016 .

[3]  Delphine Riu,et al.  A review on lithium-ion battery ageing mechanisms and estimations for automotive applications , 2013 .

[4]  S. Kjelstrup,et al.  Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles , 2017 .

[5]  Dc Kitty Nijmeijer,et al.  Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis , 2014 .

[6]  Valentín Pérez-Herranz,et al.  Effect of the Operation and Humidification Temperatures on the Performance of a PEM Fuel Cell Stack , 2009, ECS Transactions.

[7]  G. Manzolini,et al.  Potentiality of a biogas membrane reformer for decentralized hydrogen production , 2018, Chemical Engineering and Processing - Process Intensification.

[8]  P. Rastogi,et al.  Relative humidity sensor with optical fiber Bragg gratings. , 2002, Optics letters.

[9]  Romano Giglioli,et al.  Liquid air energy storage: Potential and challenges of hybrid power plants , 2017 .

[10]  U. Shaked,et al.  H/sub infinity /-optimal estimation: a tutorial , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[11]  Lluc Canals Casals,et al.  Second life batteries lifespan: Rest of useful life and environmental analysis. , 2019, Journal of environmental management.

[12]  Yang Gao,et al.  Lithium-ion battery aging mechanisms and life model under different charging stresses , 2017 .

[13]  K. Edström,et al.  Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries : A Photoelectron Spectroscopy Study , 2013 .

[14]  O. Bernard,et al.  Perspectives of optical colourimetric sensors for anaerobic digestion , 2019, Renewable and Sustainable Energy Reviews.

[15]  M. Carvalho,et al.  The lithium-ion battery: State of the art and future perspectives , 2018, Renewable and Sustainable Energy Reviews.

[16]  Thomas Mayer,et al.  Feasibility study of 2020 target costs for PEM fuel cells and lithium-ion batteries: A two-factor experience curve approach , 2012 .

[17]  Jianguo Jiang,et al.  A review of recent developments in hydrogen production via biogas dry reforming , 2018, Energy Conversion and Management.

[18]  J. Veerman,et al.  Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model , 2008 .

[19]  Subir Roychoudhury,et al.  Development of integrated reformer systems for syngas production , 2012 .

[20]  Antonio Piacentino,et al.  Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion , 2017 .

[21]  Shun Mao,et al.  Silicon nanotube anode for lithium-ion batteries , 2013 .

[22]  Koji Sekai,et al.  Advanced carbon anode materials for lithium ion cells , 1999 .

[23]  Jacob Joseph Lamb,et al.  Carbohydrate Yield and Biomethane Potential from Enzymatically Hydrolysed Saccharina latissima and Its Industrial Potential , 2019, Advances in Microbiology.

[24]  T. Gundersen,et al.  A new efficiency parameter for exergy analysis in low temperature processes , 2015 .

[25]  Rien Herber,et al.  Upscale potential and financial feasibility of a reverse electrodialysis power plant , 2014 .

[26]  Christopher D. Rahn,et al.  Effects of Non-Uniform Current Distribution on Energy Density of Li-Ion Cells , 2013 .

[27]  Cher Ming Tan,et al.  Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature , 2015, Scientific Reports.

[28]  I. Staffell,et al.  Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects , 2012 .

[29]  Dc Kitty Nijmeijer,et al.  Power generation using profiled membranes in reverse electrodialysis , 2011 .

[30]  Oluwadamilola O. Taiwo,et al.  Non-uniform temperature distribution in Li-ion batteries during discharge – A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach , 2014 .

[31]  K. Pitzer,et al.  Thermodynamics of NaCl in steam , 1986 .

[32]  D. Moon,et al.  Hydrogen production by steam reforming of methane over nickel based structured catalysts supported on calcium aluminate modified SiC , 2019, International Journal of Hydrogen Energy.

[33]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[34]  B. Logan,et al.  Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. , 2014, Physical chemistry chemical physics : PCCP.

[35]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[36]  George Kosmadakis,et al.  Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment , 2019, Energy.

[37]  S. Pannala,et al.  The potential of silicon anode based lithium ion batteries , 2016 .

[38]  Dc Kitty Nijmeijer,et al.  Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis , 2014 .

[39]  Michele Tedesco,et al.  Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes , 2016 .

[40]  J. Bernard,et al.  Calendar aging of commercial graphite/LiFePO4 cell - Predicting capacity fade under time dependent storage conditions , 2014 .

[41]  Henk Huisseune,et al.  Thermodynamic analysis of energy storage with a liquid air Rankine cycle , 2013 .

[42]  J. Post,et al.  Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. , 2008, Environmental science & technology.

[43]  H. Ibrahima,et al.  Energy storage systems — Characteristics and comparisons , 2008 .

[44]  I. Dincer,et al.  Review and evaluation of hydrogen production options for better environment , 2019, Journal of Cleaner Production.

[45]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[46]  Fausto Gallucci,et al.  Development of thin Pd–Ag supported membranes for fluidized bed membrane reactors including WGS related gases , 2015 .

[47]  Majid Bahrami,et al.  Temperature Rise in Prismatic Polymer Lithium-Ion Batteries: An Analytic Approach , 2012 .

[48]  M. Dubarry,et al.  Calendar aging of commercial Li-ion cells of different chemistries – A review , 2018, Current Opinion in Electrochemistry.

[49]  Martin Winter,et al.  Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density , 2017, Journal of Solid State Electrochemistry.

[50]  M. Hatzell,et al.  Harvesting Natural Salinity Gradient Energy for Hydrogen Production Through Reverse Electrodialysis Power Generation , 2017 .

[51]  W. David,et al.  Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system , 1993 .

[52]  Mohan Kolhe,et al.  Battery technologies for electric vehicles , 2017 .

[53]  José Luz Silveira,et al.  Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis , 2013 .

[54]  A. Deydier,et al.  A review on high temperature thermochemical heat energy storage , 2014 .

[55]  Dag Roar Hjelme,et al.  A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants , 2019, Applied Sciences.

[56]  Dong-Won Kim,et al.  Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries , 2010 .

[57]  David Reay,et al.  Opportunities for low-grade heat recovery in the UK food processing industry , 2013 .

[58]  S. Lux,et al.  Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging , 2017 .

[59]  Michael Papapetrou,et al.  Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System , 2019, Energies.

[60]  T. Xu,et al.  Storable hydrogen production by Reverse Electro-Electrodialysis (REED) , 2017 .

[61]  Mohd Nizar Hamidon,et al.  Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review , 2014, Sensors.

[62]  J. Judkins,et al.  Long-period fiber gratings as band-rejection filters , 1995 .

[63]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[64]  Daniel M. Seo,et al.  Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries , 2015 .

[65]  Arnan Mitchell,et al.  Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications , 2011 .

[66]  Patrice Mégret,et al.  Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions , 2014, Sensors.

[67]  John Aurie Dean,et al.  Instrumental methods of analysis , 1951 .

[68]  Kenneth T. V. Grattan,et al.  Fiber optic sensor technology: an overview , 2000 .

[69]  M. Götz,et al.  Review on methanation – From fundamentals to current projects , 2016 .

[70]  Karim Ghaib,et al.  Power-to-Methane: A state-of-the-art review , 2018 .

[71]  D. Leung,et al.  A review on reforming bio-ethanol for hydrogen production , 2007 .

[72]  K. Carr-Brion,et al.  Moisture Sensors in Process Control , 1986 .

[73]  Luisa F. Cabeza,et al.  Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries , 2015 .

[74]  H. McMurray Hydrogen evolution and oxygen reduction at a titanium sonotrode , 1998 .

[75]  J. Pharoah,et al.  Thermal Conductivity, Heat Sources and Temperature Profiles of Li-Ion Batteries , 2014 .

[76]  Dacheng Li,et al.  Load shifting of nuclear power plants using cryogenic energy storage technology , 2014 .

[77]  Bruce E. Logan,et al.  Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells , 2015 .

[78]  Kari Alanne,et al.  Distributed energy generation and sustainable development , 2006 .

[79]  Ryan S. Kingsbury,et al.  Energy storage by reversible electrodialysis: The concentration battery , 2015 .

[80]  P. R. Wiederhold Water Vapor Measurement: Methods and Instrumentation , 1997 .

[81]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[82]  Tanvir R. Tanim,et al.  Aging formula for lithium ion batteries with solid electrolyte interphase layer growth , 2015 .

[83]  Yan Jin,et al.  Challenges and Recent Progress in the Development of Si Anodes for Lithium‐Ion Battery , 2017 .

[84]  B. Pollet,et al.  Recent developments in the sonoelectrochemical synthesis of nanomaterials. , 2019, Ultrasonics sonochemistry.

[85]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .

[86]  B. Freeman,et al.  Ion Diffusion Coefficients in Ion Exchange Membranes: Significance of Counterion Condensation , 2018, Macromolecules.

[87]  N. Koratkar,et al.  Carbon science in 2016: Status, challenges and perspectives , 2016 .

[88]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[89]  Matthias Wessling,et al.  On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport , 2010 .

[90]  Arumugam Manthiram,et al.  A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries , 2017 .

[91]  Meihong Wang,et al.  Energy storage technologies and real life applications – A state of the art review , 2016 .

[92]  Jacob Joseph Lamb,et al.  Fermentative Bioethanol Production Using Enzymatically Hydrolysed Saccharina latissima , 2018 .

[93]  Wojciech M. Budzianowski,et al.  A review of potential innovations for production, conditioning and utilization of biogas with multiple criteria assessment , 2016 .

[94]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[95]  O. Coronell,et al.  Osmotic Ballasts Enhance Faradaic Efficiency in Closed-Loop, Membrane-Based Energy Systems. , 2017, Environmental science & technology.

[96]  D. Iribarren,et al.  Exergy analysis of hydrogen production via biogas dry reforming , 2018, International Journal of Hydrogen Energy.

[97]  Adam W. Hoover,et al.  Sensor network perception for mobile robotics , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[98]  B. Logan,et al.  Harvesting Energy from Salinity Differences Using Battery Electrodes in a Concentration Flow Cell. , 2016, Environmental science & technology.

[99]  A. A. Moya Numerical simulation of ionic transport processes through bilayer ion-exchange membranes in reverse electrodialysis stacks , 2017 .

[100]  K. Hill,et al.  Fiber Bragg grating technology fundamentals and overview , 1997 .

[101]  A. Burrell Silicon Electrolyte Interface Stabilization (SEISta), Second Quarter Progress Report 2018 , 2018 .

[102]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[103]  Bruno G. Pollet,et al.  Energy-Smart Buildings; Design, construction and monitoring of buildings for improved energy efficiency , 2020 .

[104]  Taeeun Yim,et al.  Artificial cathode-electrolyte interphases on nickel-rich cathode materials modified by silyl functional group , 2019, Journal of Power Sources.

[105]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[106]  Qie Sun,et al.  Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation , 2015 .

[107]  Li Lu,et al.  Review on solid electrolytes for all-solid-state lithium-ion batteries , 2018, Journal of Power Sources.

[108]  Hong-Bo Sun,et al.  Reflective Optical Fiber Sensors Based on Tilted Fiber Bragg Gratings Fabricated With Femtosecond Laser , 2013, Journal of Lightwave Technology.

[109]  J. Seinfeld,et al.  Atmospheric Gas-Aerosol Equilibrium: IV. Thermodynamics of Carbonates , 1995 .

[110]  Jianming Zheng,et al.  Reduction mechanism of fluoroethylene carbonate for stable solid–electrolyte interphase film on silicon anode. , 2014, ChemSusChem.

[111]  Jianming Zheng,et al.  Designing principle for Ni-rich cathode materials with high energy density for practical applications , 2018, Nano Energy.

[112]  Grazia Leonzio ANOVA analysis of an integrated membrane reactor for hydrogen production by methane steam reforming , 2019, International Journal of Hydrogen Energy.

[113]  M. Fatih Demirbas,et al.  Hydrogen from Various Biomass Species via Pyrolysis and Steam Gasification Processes , 2006 .

[114]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[115]  S. Kjelstrup,et al.  Thermal conductivity and internal temperature profiles of Li-ion secondary batteries , 2017 .

[116]  Noam Lior,et al.  Energy, exergy, and Second Law performance criteria , 2007 .

[117]  Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack , 2013 .

[118]  L. Cabeza,et al.  Selection of materials with potential in sensible thermal energy storage , 2010 .

[119]  Jens R. Rostrup-Nielsen,et al.  Large-Scale Hydrogen Production , 2002 .

[120]  Ma Ying,et al.  Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate) , 2015 .

[121]  T. Gundersen,et al.  Development and use of exergy efficiency for complex cryogenic processes , 2018, Energy Conversion and Management.

[122]  Chao Zhang,et al.  High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity. , 2013, Optics express.

[123]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[124]  J. Leaver,et al.  Incentives and legal barriers for power-to-hydrogen pathways: An international snapshot , 2019, International Journal of Hydrogen Energy.

[125]  Samveg Saxena,et al.  Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models , 2015 .

[126]  Timothy J. Mason,et al.  Sonochemistry : the uses of ultrasound in chemistry , 1990 .

[127]  H. Alves,et al.  Overview of hydrogen production technologies from biogas and the applications in fuel cells , 2013 .

[128]  B. Logan,et al.  Influence of solution concentration and salt types on the performance of reverse electrodialysis cells , 2015 .

[129]  D. Thomson,et al.  Optical fiber refractometer using narrowband cladding-mode resonance shifts. , 2007, Applied optics.

[130]  Mariano Martín,et al.  Renewable based biogas upgrading , 2019, Journal of Cleaner Production.

[131]  Hans Oechsner,et al.  Biological hydrogen methanation - A review. , 2017, Bioresource technology.

[132]  J. Pharoah,et al.  A review of the curious case of heat transport in polymer electrolyte fuel cells and the need for more characterisation , 2017 .

[133]  Rainer Reimert,et al.  Improvement of three-phase methanation reactor performance for steady-state and transient operation , 2015 .

[134]  M. A. Rosen,et al.  Appropriate thermodynamic performance measures for closed systems for thermal energy storage , 1992 .

[135]  R. Hirvonen,et al.  Energy visions 2030 for Finland , 2001 .

[136]  S. Sarker,et al.  Overview of recent progress towards in-situ biogas upgradation techniques , 2018, Fuel.

[137]  Nicolae Scarlat,et al.  Biogas: Developments and perspectives in Europe , 2018, Renewable Energy.

[138]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[139]  B. Landi,et al.  Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). , 2013, Nano letters.

[140]  Alan D. Kersey,et al.  Analysis of the response of long period fiber gratings to external index of refraction , 1998 .

[141]  George Kosmadakis,et al.  Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country , 2018, Applied Thermal Engineering.

[142]  M. Moreno-Bondi,et al.  Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection , 2006 .

[143]  H. Vervaeren,et al.  Techniques for transformation of biogas to biomethane , 2011 .

[144]  D. Fino,et al.  Efficiency of a pilot-plant for the autothermal reforming of biogas , 2019, International Journal of Hydrogen Energy.

[145]  Bruno G. Pollet,et al.  Power Ultrasound in Electrochemistry: From Versatile Laboratory Tool to Engineering Solution , 2012 .

[146]  H. Kawakami,et al.  Humidity-sensing effects of optical fibres with microporous SiO2 cladding , 1988 .

[147]  J. Dukovic,et al.  The Influence of Attached Bubbles on Potential Drop and Current Distribution at Gas‐Evolving Electrodes , 1987 .

[148]  G. Micale,et al.  Towards the first proof of the concept of a Reverse ElectroDialysis - Membrane Distillation Heat Engine , 2019, Desalination.

[149]  Yi Cui,et al.  Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries. , 2011, ACS nano.

[150]  Wangda Li,et al.  High-voltage positive electrode materials for lithium-ion batteries. , 2017, Chemical Society reviews.

[151]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[152]  Wengao Zhao,et al.  Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO 2 F 2 salt-type additive and its working mechanism for LiNi 0.5 Mn 0.25 Co 0.25 O 2 cathodes , 2018 .

[153]  Yuya Kajikawa,et al.  Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research , 2018 .

[154]  A. Cipollina,et al.  Performance of a RED system with ammonium hydrogen carbonate solutions , 2016 .

[155]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[156]  B. Pollet,et al.  Transport Limited Currents Close to an Ultrasonic Horn Equivalent Flow Velocity Determination , 2007 .

[157]  Fabio Polonara,et al.  State of the art of thermal storage for demand-side management , 2012 .

[158]  R. Nogueira,et al.  Three-parameter optical fiber sensor based on a tilted fiber Bragg grating , 2010 .

[159]  Salman Hassan Zadeh Hydrogen Production via Ultrasound-Aided Alkaline Water Electrolysis , 2014 .

[160]  Wang Ying,et al.  A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries , 2017 .

[161]  S. Kjelstrup,et al.  Single Electrode Entropy Change for LiCoO2 Electrodes , 2017 .

[162]  J. Lamb,et al.  Effect of power ultrasound and Fenton reagents on the biomethane potential from steam-exploded birchwood. , 2019, Ultrasonics sonochemistry.

[163]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[164]  Andrew M. Colclasure,et al.  Degradation mechanisms of high capacity 18650 cells containing Si-graphite anode and nickel-rich NMC cathode , 2019, Electrochimica Acta.

[165]  G. Wehinger,et al.  Dynamic simulation of the CO2 methanation in a micro-structured fixed-bed reactor , 2019, Chemical Engineering Science.

[166]  Lide M. Rodriguez-Martinez,et al.  Cycle ageing analysis of a LiFePO4/graphite cell with dynamic model validations: Towards realistic lifetime predictions , 2014 .

[167]  Yong Zhao,et al.  Recent advancements in optical fiber hydrogen sensors , 2017 .

[168]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[169]  Abdul Shakoor,et al.  Technical overview of compressed natural gas (CNG) as a transportation fuel , 2015 .

[170]  Osagie A. Osadolor,et al.  Innovative pretreatment strategies for biogas production. , 2017, Bioresource technology.

[171]  O. Bernard,et al.  Perspectives of surface plasmon resonance sensors for optimized biogas methanation , 2019, Engineering in life sciences.

[172]  Dori Yosef Kalai,et al.  CO2 Methanation : The Effect of Catalysts and Reaction Conditions , 2017 .

[173]  Peter Lund,et al.  Review of energy system flexibility measures to enable high levels of variable renewable electricity , 2015 .

[174]  Shaomin Li,et al.  Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide) , 2014 .

[175]  Zhancheng Guo,et al.  The intensification technologies to water electrolysis for hydrogen production - A review , 2014 .

[176]  A Novel Fiber-Optic Gas Sensing Arrangement Based on an Air Gap Design and an Application to Optical Detection of Humidity , 1998 .

[177]  Chuyang Y. Tang,et al.  Co-locating reverse electrodialysis with reverse osmosis desalination: Synergies and implications , 2017 .

[178]  J. Rintala,et al.  Techno-economic analysis of a power to biogas system operated based on fluctuating electricity price , 2018 .

[179]  Guy Z. Ramon,et al.  Membrane-based production of salinity-gradient power , 2011 .

[180]  M. Manno,et al.  Thermodynamic analysis of a liquid air energy storage system , 2015 .

[181]  W. Blyth,et al.  Energy Security and Climate Change Policy Interactions - An Assessment Framework , 2005 .

[182]  V. V. S. Sarma,et al.  Multisensor data fusion and decision support for airborne target identification , 1991, IEEE Trans. Syst. Man Cybern..

[183]  S. E. Hosseini,et al.  Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development , 2016 .

[184]  A.S. Biris,et al.  Use of carbon nanostructures for hydrogen storage for environmentally safe automotive applications , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[185]  Bin Zhu,et al.  Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes. , 2016, Nano letters.

[186]  Carlos Ocampo-Martinez,et al.  Advances in alkaline water electrolyzers: A review , 2019, Journal of Energy Storage.

[187]  P. Mukherjee,et al.  Materials for positive electrodes in rechargeable lithium-ion batteries , 2015 .

[188]  Bai-Ou Guan,et al.  [INVITED] Tilted fiber grating mechanical and biochemical sensors ☆ , 2016 .

[189]  M. Menéndez,et al.  Pure hydrogen from biogas: Intensified methane dry reforming in a two-zone fluidized bed reactor using permselective membranes , 2019, Chemical Engineering Journal.

[190]  G. E. Taylor,et al.  Computer Controlled Systems: Theory and Design , 1985 .

[191]  Otto S. Wolfbeis,et al.  Optical sensors, 13: fibre-optic humidity sensor based on fluorescence quenching , 1988 .

[192]  Gianfranco Chicco,et al.  Applications of power to gas technologies in emerging electrical systems , 2018, Renewable and Sustainable Energy Reviews.

[193]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[194]  A. M. Efstathiou,et al.  Hydrogen Production Technologies: Current State and Future Developments , 2013 .

[195]  Hyun-Wook Lee,et al.  Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents , 2014, Nature Communications.

[196]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[197]  Luis M. Romeo,et al.  Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2 , 2017 .

[198]  Matthias Wessling,et al.  Practical potential of reverse electrodialysis as process for sustainable energy generation. , 2009, Environmental science & technology.

[199]  F. Graf,et al.  Renewable Power-to-Gas: A technological and economic review , 2016 .

[200]  A. Perner,et al.  Lithium-ion batteries for hybrid electric vehicles and battery electric vehicles , 2015 .

[201]  J. Ivy,et al.  Summary of Electrolytic Hydrogen Production: Milestone Completion Report , 2004 .

[202]  Kitty Nijmeijer,et al.  Fouling in reverse electrodialysis under natural conditions. , 2013, Water research.

[203]  Hlynur Stefansson,et al.  Potential use of geothermal energy sources for the production of lithium-ion batteries , 2011 .

[204]  H. Guerrero,et al.  High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers , 2004, IEEE Sensors Journal.

[205]  Wenxiu Yang,et al.  Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane , 2018, Journal of Power Sources.

[206]  Kilsung Kwon,et al.  Parametric study of reverse electrodialysis using ammonium bicarbonate solution for low-grade waste heat recovery , 2015 .

[207]  Jong-Tae Son,et al.  Novel design of core shell structure by NCA modification on NCM cathode material to enhance capacity and cycle life for lithium secondary battery , 2015 .

[208]  W. Lukosz,et al.  Grating couplers as integrated optical humidity and gas sensors , 1985 .

[209]  Teuku Meurah Indra Mahlia,et al.  A review of available methods and development on energy storage; technology update , 2014 .

[210]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[211]  O. Burheim,et al.  Opportunities and challenges for thermally driven hydrogen production using reverse electrodialysis system , 2020 .

[212]  M. Tysklind,et al.  Use of Liquefied Biomethane (LBM) as a Vehicle Fuel for Road Freight Transportation : A Case Study Evaluating Environmental Performance of Using LBM for Operation of Tractor Trailers , 2018 .

[213]  M. Wohlfahrt‐Mehrens,et al.  Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study , 2014 .

[214]  Andreas Poullikkas,et al.  A comparative overview of hydrogen production processes , 2017 .

[215]  Claus Daniel,et al.  Prospects for reducing the processing cost of lithium ion batteries , 2015 .

[216]  Jens Bo Holm-Nielsen,et al.  Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation. , 2015, Bioresource technology.

[217]  Daniel-Ioan Stroe,et al.  Battery second life: Hype, hope or reality? A critical review of the state of the art , 2018, Renewable and Sustainable Energy Reviews.

[218]  Jiuchun Jiang,et al.  Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode , 2018, Journal of Power Sources.

[219]  O. Hamdaoui,et al.  The size of active bubbles for the production of hydrogen in sonochemical reaction field. , 2016, Ultrasonics sonochemistry.

[220]  I. Gondal Hydrogen integration in power-to-gas networks , 2019, International Journal of Hydrogen Energy.

[221]  Yuya Kajikawa,et al.  Comprehensive Analysis of Trends and Emerging Technologies in All Types of Fuel Cells Based on a Computational Method , 2018 .

[222]  H. Hamelers,et al.  Energy efficiency of a concentration gradient flow battery at elevated temperatures , 2017 .

[223]  M. Verbrugge,et al.  Cycle-life model for graphite-LiFePO 4 cells , 2011 .

[224]  Myung Won Seo,et al.  Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. , 2016, Nano letters.

[225]  Qiang Liu,et al.  A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance , 2016 .

[226]  Chakib Bouallou,et al.  Methanation catalytic reactor , 2014 .

[227]  Nicolas Javahiraly,et al.  Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium , 2015 .

[228]  Jiří Jaromír Klemeš,et al.  Total Site Heat Integration planning and design for industrial, urban and renewable systems , 2017 .

[229]  Valerie Dupont,et al.  Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective , 2017 .

[230]  Samir Kumar Khanal,et al.  Biogas as a sustainable energy source for developing countries: Opportunities and challenges , 2014 .

[231]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[232]  Diana Golodnitsky,et al.  Effect of carbon substrate on SEI composition and morphology , 2004 .

[233]  Hubertus V. M. Hamelers,et al.  Towards implementation of reverse electrodialysis for power generation from salinity gradients , 2010 .

[234]  Jens R. Rostrup-Nielsen,et al.  Hydrogen and Synthesis Gas by Steam‐ and CO2 Reforming , 2003 .

[235]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[236]  D. Fino,et al.  LCA evaluation for the hydrogen production from biogas through the innovative BioRobur project concept , 2017 .

[237]  A. Eddahech,et al.  Performance comparison of four lithium–ion battery technologies under calendar aging , 2015 .

[238]  A. Jossen,et al.  Lithium-ion Battery Cost Analysis in PV-household Application , 2015 .

[239]  Daejoong Kim,et al.  Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery , 2017 .

[240]  E. Giannelis,et al.  Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance. , 2011, Physical chemistry chemical physics : PCCP.

[241]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[242]  Sangseok Yu,et al.  Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area , 2008 .

[243]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[244]  K. Xiao,et al.  Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat , 2012 .

[245]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[246]  Christine Minke,et al.  Economics of vanadium redox flow battery membranes , 2015 .

[247]  Qi Li,et al.  Progress in electrolytes for rechargeable Li-based batteries and beyond , 2016 .

[248]  U. Wagner,et al.  Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack , 2004 .

[249]  Martin Koller,et al.  Advanced Adiabatic Compressed Air Energy Storage for the Integration of Wind Energy , 2004 .

[250]  S. Kjelstrup,et al.  Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell , 2010 .

[251]  Antonio Piacentino,et al.  Reverse electrodialysis heat engine for sustainable power production , 2017 .