Improving named entity correctness of abstractive summarization by generative negative sampling

[1]  Qingkai Zeng,et al.  Enhancing Factual Consistency of Abstractive Summarization , 2021, NAACL.

[2]  Ramesh Nallapati,et al.  Improving Factual Consistency of Abstractive Summarization via Question Answering , 2021, ACL.

[3]  Artidoro Pagnoni,et al.  Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics , 2021, NAACL.

[4]  Ramesh Nallapati,et al.  Entity-level Factual Consistency of Abstractive Text Summarization , 2021, EACL.

[5]  Yejin Choi,et al.  GO FIGURE: A Meta Evaluation of Factuality in Summarization , 2020, FINDINGS.

[6]  Colin Raffel,et al.  mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer , 2020, NAACL.

[7]  J. C. Cheung,et al.  Factual Error Correction for Abstractive Summarization Models , 2020, EMNLP.

[8]  Jackie Chi Kit Cheung,et al.  Multi-Fact Correction in Abstractive Text Summarization , 2020, EMNLP.

[9]  Wanxiang Che,et al.  N-LTP: An Open-source Neural Language Technology Platform for Chinese , 2020, EMNLP.

[10]  Ryan McDonald,et al.  On Faithfulness and Factuality in Abstractive Summarization , 2020, ACL.

[11]  Alex Wang,et al.  Asking and Answering Questions to Evaluate the Factual Consistency of Summaries , 2020, ACL.

[12]  Christopher D. Manning,et al.  Optimizing the Factual Correctness of a Summary: A Study of Summarizing Radiology Reports , 2019, ACL.

[13]  Omer Levy,et al.  BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension , 2019, ACL.

[14]  Richard Socher,et al.  Evaluating the Factual Consistency of Abstractive Text Summarization , 2019, EMNLP.

[15]  Colin Raffel,et al.  Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer , 2019, J. Mach. Learn. Res..

[16]  Lysandre Debut,et al.  HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.

[17]  Mirella Lapata,et al.  Text Summarization with Pretrained Encoders , 2019, EMNLP.

[18]  Ben Goodrich,et al.  Assessing The Factual Accuracy of Generated Text , 2019, KDD.

[19]  Ido Dagan,et al.  Ranking Generated Summaries by Correctness: An Interesting but Challenging Application for Natural Language Inference , 2019, ACL.

[20]  Haoran Li,et al.  Ensure the Correctness of the Summary: Incorporate Entailment Knowledge into Abstractive Sentence Summarization , 2018, COLING.

[21]  Richard Socher,et al.  Improving Abstraction in Text Summarization , 2018, EMNLP.

[22]  Ramakanth Pasunuru,et al.  Soft Layer-Specific Multi-Task Summarization with Entailment and Question Generation , 2018, ACL.

[23]  Furu Wei,et al.  Faithful to the Original: Fact Aware Neural Abstractive Summarization , 2017, AAAI.

[24]  Xiaojun Wan,et al.  Overview of the NLPCC 2017 Shared Task: Single Document Summarization , 2017, NLPCC.

[25]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[26]  Bowen Zhou,et al.  Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond , 2016, CoNLL.

[27]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[28]  Jamshid Bagherzadeh,et al.  An Evaluation of Two-Step Techniques for Positive-Unlabeled Learning in Text Classification , 2014 .

[29]  Charles Elkan,et al.  Learning classifiers from only positive and unlabeled data , 2008, KDD.

[30]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[31]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[32]  I. Alsmadi,et al.  Deep reinforcement and transfer learning for abstractive text summarization: A review , 2022, Comput. Speech Lang..

[33]  C. Pal,et al.  On Extractive and Abstractive Neural Document Summarization with Transformer Language Models , 2020, EMNLP.

[34]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[35]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .