On the Aperture Problem of Binocular 3D Motion Perception

Like many predators, humans have forward-facing eyes that are set a short distance apart so that an extensive region of the visual field is seen from two different points of view. The human visual system can establish a three-dimensional (3D) percept from the projection of images into the left and right eye. How the visual system integrates local motion and binocular depth in order to accomplish 3D motion perception is still under investigation. Here, we propose a geometric-statistical model that combines noisy velocity constraints with a spherical motion prior to solve the aperture problem in 3D. In two psychophysical experiments, it is shown that instantiations of this model can explain how human observers disambiguate 3D line motion direction behind a circular aperture. We discuss the implications of our results for the processing of motion and dynamic depth in the visual system. Dataset: osf.io/2j6sq.

[1]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[2]  Thaddeus B. Czuba,et al.  Speed and eccentricity tuning reveal a central role for the velocity-based cue to 3D visual motion. , 2010, Journal of neurophysiology.

[3]  B. G. Cumming,et al.  Binocular mechanisms for detecting motion-in-depth , 1994, Vision Research.

[4]  M. Morgan,et al.  The aperture problem in stereopsis , 1997, Vision Research.

[5]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[6]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[7]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Bertram E. Shi,et al.  Neural population models for perception of motion in depth , 2014, Vision Research.

[9]  David C. Knill,et al.  Introduction: a Bayesian formulation of visual perception , 1996 .

[10]  L. Cormack,et al.  Disparity- and velocity-based signals for three-dimensional motion perception in human MT+ , 2009, Nature Neuroscience.

[11]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[12]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[13]  John Porrill,et al.  Robust and optimal use of information in stereo vision , 1999, Nature.

[14]  A. Parker,et al.  A specialization for relative disparity in V2 , 2002, Nature Neuroscience.

[15]  Yuzo Hirai,et al.  Decoding of depth and motion in ambiguous binocular perception. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  R. Gregory Perceptions as hypotheses. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  A. Raftery Bayes Factors and BIC , 1999 .

[18]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[19]  D. Angelaki Faculty Opinions recommendation of Perceptual "read-out" of conjoined direction and disparity maps in extrastriate area MT. , 2004 .

[20]  B. Farell,et al.  Projected disparity, not horizontal disparity, predicts stereo depth of 1-D patterns , 2009, Vision Research.

[21]  安藤 広志,et al.  20世紀の名著名論:David Marr:Vision:a Computational Investigation into the Human Representation and Processing of Visual Information , 2005 .

[22]  Orbach PII: S0042-6989(01)00209-7 , 2001 .

[23]  J. Bakin,et al.  Visual Responses in Monkey Areas V1 and V2 to Three-Dimensional Surface Configurations , 2000, The Journal of Neuroscience.

[24]  R. Born,et al.  Integrating motion and depth via parallel pathways , 2008, Nature Neuroscience.

[25]  Julie M. Harris,et al.  Two Independent Mechanisms for Motion-In-Depth Perception: Evidence from Individual Differences , 2010, Front. Psychology.

[26]  Hiroyuki Ito The Aperture Problems in the Pulfrich Effect , 2003, Perception.

[27]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[28]  Hirohisa Yaguchi,et al.  Motion in depth based on inter-ocular velocity differences , 2000, Vision Research.

[29]  C Shawn Green,et al.  Optimal Combination of the Binocular Cues to 3D Motion. , 2015, Investigative ophthalmology & visual science.

[30]  Emily A. Cooper,et al.  Systematic misperceptions of 3-D motion explained by Bayesian inference , 2017, bioRxiv.

[31]  Raymond van Ee,et al.  Unconstrained stereoscopic matching of lines , 2000, Vision Research.

[32]  P. Cz. Handbuch der physiologischen Optik , 1896 .

[33]  Eero P. Simoncelli,et al.  Noise characteristics and prior expectations in human visual speed perception , 2006, Nature Neuroscience.

[34]  K. Nakayama,et al.  Occlusion and the solution to the aperture problem for motion , 1989, Vision Research.

[35]  Izumi Ohzawa,et al.  Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect , 2001, Nature Neuroscience.

[36]  Leland S Stone,et al.  Stereomotion speed perception: contributions from both changing disparity and interocular velocity difference over a range of relative disparities. , 2004, Journal of vision.

[37]  C W Tyler,et al.  Stereoscopic Depth Movement: Two Eyes Less Sensitive than One , 1971, Science.

[38]  M. Lages,et al.  Screening and sampling in studies of binocular vision , 2012, Vision Research.

[39]  Thaddeus B. Czuba,et al.  Binocular Mechanisms of 3D Motion Processing. , 2017, Annual review of vision science.

[40]  Lora T. Likova,et al.  Stereomotion processing in the human occipital cortex , 2007, NeuroImage.

[41]  Martin Lages Bayesian models of binocular 3-D motion perception. , 2006, Journal of vision.

[42]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[43]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[44]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[45]  Martin Lages,et al.  A Bayesian approach to the aperture problem of 3D motion perception , 2012, 2012 International Conference on 3D Imaging (IC3D).

[46]  James M. Hillis,et al.  Slant from texture and disparity cues: optimal cue combination. , 2004, Journal of vision.

[47]  Hugh R. Wilson,et al.  Perceived direction of moving two-dimensional patterns depends on duration, contrast and eccentricity , 1992, Vision Research.

[48]  N. Qian,et al.  A Physiological Model for Motion-Stereo Integration and a Unified Explanation of Pulfrich-like Phenomena , 1997, Vision Research.

[49]  M. Ernst,et al.  Focus cues affect perceived depth. , 2005, Journal of vision.

[50]  Martin Lages,et al.  On the Inverse Problem of Binocular 3D Motion Perception , 2010, PLoS Comput. Biol..

[51]  M. Cynader,et al.  Stereoscopic subsystems for position in depth and for motion in depth , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[52]  T. Poggio,et al.  BOOK REVIEW David Marr’s Vision: floreat computational neuroscience VISION: A COMPUTATIONAL INVESTIGATION INTO THE HUMAN REPRESENTATION AND PROCESSING OF VISUAL INFORMATION , 2009 .

[53]  Martin Lages,et al.  Local Constraints for the Perception of Binocular 3D Motion , 2013 .

[54]  Hans Wallach Über visuell wahrgenommene Bewegungsrichtung , 1935 .

[55]  S. Dumoulin,et al.  Impaired Velocity Processing Reveals an Agnosia for Motion in Depth , 2016, Psychological science.

[56]  Hiroshi Ban,et al.  The integration of motion and disparity cues to depth in dorsal visual cortex , 2012, Nature Neuroscience.

[57]  J. Movshon,et al.  Motion Integration by Neurons in Macaque MT Is Local, Not Global , 2007, The Journal of Neuroscience.

[58]  Alan L. Yuille,et al.  Functional form of motion priors in human motion perception , 2010, NIPS.

[59]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[60]  M F Bradshaw,et al.  The direction of retinal motion facilitates binocular steropsis , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[61]  Jenny C. A. Read,et al.  A Bayesian Approach to the Stereo Correspondence Problem , 2002, Neural Computation.

[62]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[63]  Heinrich H Bülthoff,et al.  Bayesian motion estimation accounts for a surprising bias in 3D vision , 2008, Proceedings of the National Academy of Sciences.

[64]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[65]  Leslie Welch,et al.  The perception of moving plaids reveals two motion-processing stages , 1989, Nature.

[66]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[67]  David C. Knill,et al.  Orientation Disparity: A Cue for 3D Orientation? , 2009, Neural Computation.

[68]  C. Connor,et al.  Three-dimensional orientation tuning in macaque area V4 , 2002, Nature Neuroscience.

[69]  Barton L. Anderson,et al.  Motion direction, speed and orientation in binocular matching , 2001, Nature.

[70]  Emily A. Cooper,et al.  Sensitivity and bias in the discrimination of two-dimensional and three-dimensional motion direction. , 2016, Journal of vision.

[71]  Guillaume S. Masson,et al.  Motion-Based Prediction Is Sufficient to Solve the Aperture Problem , 2012, Neural Computation.

[72]  O. Braddick,et al.  Seeing in Depth , 2008 .

[73]  Andrew E Welchman,et al.  The Human Brain in Depth: How We See in 3D. , 2016, Annual review of vision science.

[74]  Thaddeus B. Czuba,et al.  Motion processing with two eyes in three dimensions. , 2011, Journal of vision.

[75]  Michael S. Landy,et al.  Bayesian modeling of visual perception , 2002 .

[76]  Thaddeus B. Czuba,et al.  Area MT Encodes Three-Dimensional Motion , 2014, The Journal of Neuroscience.

[77]  David Ascher,et al.  A Bayesian model for the measurement of visual velocity , 2000, Vision Research.

[78]  Z. Pizlo Perception viewed as an inverse problem , 2001, Vision Research.

[79]  Martin Lages,et al.  Motion and disparity processing informs Bayesian 3D motion estimation , 2008, Proceedings of the National Academy of Sciences.

[80]  Barton L Anderson,et al.  Stereoscopic Surface Perception , 1999, Neuron.

[81]  Bertram E. Shi,et al.  The changing disparity energy model , 2010, Vision Research.

[82]  P. Mamassian,et al.  Spatial and temporal tuning of motion in depth , 2003, Vision Research.

[83]  G. DeAngelis,et al.  Perceptual “Read-Out” of Conjoined Direction and Disparity Maps in Extrastriate Area MT , 2004, PLoS biology.