Workshop on Geometric Control of Mechanical Systems

[1]  有本 卓,et al.  Control theory of non-linear mechanical systems : a passivity-based and circuit-theoretic approach , 1996 .

[2]  Bernard Bonnard Controlabilite de Systemes Mecaniques Sur Les Groupes de Lie , 1984 .

[3]  John Baillieul,et al.  Stable average motions of mechanical systems subject to periodic forcing , 1993 .

[4]  Richard M. Murray,et al.  Controllability of simple mechanical control systems , 1997 .

[5]  Francesco Bullo,et al.  Low-Order Controllability and Kinematic Reductions for Affine Connection Control Systems , 2005, SIAM J. Control. Optim..

[6]  A. Schaft Controllability and observability for affine nonlinear Hamiltonian systems , 1982 .

[7]  J. Koiller Reduction of some classical non-holonomic systems with symmetry , 1992 .

[8]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[9]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping , 2001, IEEE Trans. Autom. Control..

[10]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[11]  Francesco Bullo,et al.  Series Expansions for the Evolution of Mechanical Control Systems , 2001, SIAM J. Control. Optim..

[12]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[13]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..

[14]  A. J. van der Schaft,et al.  Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces , 1983 .

[15]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[16]  R. Ortega Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .

[17]  J. L. Synge,et al.  Geodesics in non-holonomic geometry , 1928 .

[18]  Suguru Arimoto,et al.  A New Feedback Method for Dynamic Control of Manipulators , 1981 .

[19]  Jerrold E. Marsden,et al.  Foundations of Mechanics, Second Edition , 1987 .

[20]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[21]  Francesco Bullo,et al.  Averaging and Vibrational Control of Mechanical Systems , 2002, SIAM J. Control. Optim..

[22]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[23]  Arjan van der Schaft,et al.  Hamiltonian dynamics with external forces and observations , 1981, Mathematical systems theory.

[24]  Sonia Martínez,et al.  Analysis and design of oscillatory control systems , 2003, IEEE Trans. Autom. Control..

[25]  Arjan van der Schaft,et al.  Controlled invariance for hamiltonian systems , 1985, Mathematical systems theory.

[26]  Kevin M. Lynch,et al.  Kinematic controllability and decoupled trajectory planning for underactuated mechanical systems , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[27]  Peter E. Crouch,et al.  Geometric structures in systems theory , 1981 .

[28]  van der Arjan Schaft,et al.  On the Hamiltonian Formulation of Nonholonomic Mechanical Systems , 1994 .

[29]  Romeo Ortega,et al.  Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment , 2002, IEEE Trans. Autom. Control..

[30]  A. Bloch,et al.  Nonholonomic Control Systems on Riemannian Manifolds , 1995 .