Natural-scene-based Steady-state Visual Evoked Potentials Reveal Effects of Short-term Monocular Deprivation

[1]  Michael Breakspear,et al.  Naturalistic Stimuli in Neuroscience: Critically Acclaimed , 2019, Trends in Cognitive Sciences.

[2]  Erik Blaser,et al.  Assessing the kaleidoscope of monocular deprivation effects. , 2018, Journal of vision.

[3]  Jan W. Kurzawski,et al.  Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD , 2018, eLife.

[4]  Seung Hyun Min,et al.  The shift in ocular dominance from short-term monocular deprivation exhibits no dependence on duration of deprivation , 2018, Scientific Reports.

[5]  Jianrong Jia,et al.  Fast-backward replay of sequentially memorized items in humans , 2018, bioRxiv.

[6]  S. Engel,et al.  Conflict-sensitive neurons gate interocular suppression in human visual cortex , 2018, Scientific Reports.

[7]  S. Engel,et al.  The Best of Both Worlds: Adaptation During Natural Tasks Produces Long-Lasting Plasticity in Perceptual Ocular Dominance , 2018, Psychological science.

[8]  R. Hess,et al.  Absolute Not Relative Interocular Luminance Modulates Sensory Eye Dominance Plasticity in Adults , 2017, Neuroscience.

[9]  The Cortical Mechanisms Underlying Ocular Dominance Plasticity in Adults are Not Orientationally Selective , 2017, Neuroscience.

[10]  Marisa Carrasco,et al.  Attention model of binocular rivalry , 2017, Proceedings of the National Academy of Sciences.

[11]  Sheng He,et al.  Monocular deprivation of Fourier phase information boosts the deprived eye’s dominance during interocular competition but not interocular phase combination , 2017, Neuroscience.

[12]  R. Hess,et al.  Short-term monocular occlusion produces changes in ocular dominance by a reciprocal modulation of interocular inhibition , 2017, Scientific Reports.

[13]  P. Binda,et al.  Short-Term Monocular Deprivation Enhances Physiological Pupillary Oscillations , 2017, Neural plasticity.

[14]  S. Engel,et al.  Neurons that detect interocular conflict during binocular rivalry revealed with EEG. , 2016, Journal of vision.

[15]  Alessandro Sale,et al.  A cycling lane for brain rewiring , 2015, Current Biology.

[16]  M. Morrone,et al.  Short‐term monocular deprivation alters early components of visual evoked potentials , 2015, The Journal of physiology.

[17]  R. Hess,et al.  Short-term monocular patching boosts the patched eye’s response in visual cortex , 2015, Restorative neurology and neuroscience.

[18]  Uzay E. Emir,et al.  Short-Term Monocular Deprivation Alters GABA in the Adult Human Visual Cortex , 2015, Current Biology.

[19]  Justin M. Ales,et al.  The steady-state visual evoked potential in vision research: A review. , 2015, Journal of vision.

[20]  R. Hess,et al.  Real-time modulation of perceptual eye dominance in humans , 2014, Proceedings of the Royal Society B: Biological Sciences.

[21]  Stephen A. Engel,et al.  Four Days of Visual Contrast Deprivation Reveals Limits of Neuronal Adaptation , 2014, Current Biology.

[22]  David C Burr,et al.  Long-term effects of monocular deprivation revealed with binocular rivalry gratings modulated in luminance and in color. , 2013, Journal of vision.

[23]  R. Hess,et al.  Short-term monocular deprivation strengthens the patched eye's contribution to binocular combination. , 2013, Journal of vision.

[24]  David J. Heeger,et al.  A Model of Binocular Rivalry and Cross-orientation Suppression , 2013, PLoS Comput. Biol..

[25]  S. Engel,et al.  Distinct mechanism for long-term contrast adaptation , 2012, Proceedings of the National Academy of Sciences.

[26]  Peng Zhang,et al.  Binocular Rivalry Requires Visual Attention , 2011, Neuron.

[27]  David C. Burr,et al.  Brief periods of monocular deprivation disrupt ocular balance in human adult visual cortex , 2011, Current Biology.

[28]  B. Rossion,et al.  Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. , 2011, Journal of vision.

[29]  C. Clifford Binocular rivalry , 2009, Current Biology.

[30]  S. Engel,et al.  Effects of Orientation-Specific Visual Deprivation Induced with Altered Reality , 2009, Current Biology.

[31]  Erich W Graf,et al.  Natural images dominate in binocular rivalry , 2009, Proceedings of the National Academy of Sciences.

[32]  Steven C. Dakin,et al.  Sparsely distributed contours dominate extra-striate responses to complex scenes , 2008, NeuroImage.

[33]  M. Grabowecky,et al.  Long-Term Speeding in Perceptual Switches Mediated by Attention-Dependent Plasticity in Cortical Visual Processing , 2007, Neuron.

[34]  A. Kohn Visual adaptation: physiology, mechanisms, and functional benefits. , 2007, Journal of neurophysiology.

[35]  D. Spinelli,et al.  Spatiotemporal analysis of the cortical sources of the steady‐state visual evoked potential , 2007, Human brain mapping.

[36]  Kenneth D. Miller,et al.  Adaptive filtering enhances information transmission in visual cortex , 2006, Nature.

[37]  Gidon Felsen,et al.  A natural approach to studying vision , 2005, Nature Neuroscience.

[38]  Feng Qi Han,et al.  Cortical Sensitivity to Visual Features in Natural Scenes , 2005, PLoS biology.

[39]  F. Sengpiel,et al.  Intracortical Origins of Interocular Suppression in the Visual Cortex , 2005, The Journal of Neuroscience.

[40]  J. Gallant,et al.  Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons , 2004, The Journal of Neuroscience.

[41]  Ben Willmore,et al.  The Receptive-Field Organization of Simple Cells in Primary Visual Cortex of Ferrets under Natural Scene Stimulation , 2003, The Journal of Neuroscience.

[42]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[43]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[44]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[45]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[46]  I. Kovács,et al.  When the brain changes its mind: interocular grouping during binocular rivalry. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Norcia,et al.  An adaptive filter for steady-state evoked responses. , 1995, Electroencephalography and clinical neurophysiology.

[48]  A. Norcia,et al.  An adaptive filter for steady-state evoked potentials , 1993, Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ.

[49]  Larry F. Lacey,et al.  Long-term effects of on , 1987 .

[50]  G. Poggio,et al.  Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey , 1981, The Journal of physiology.

[51]  B. Hjorth An on-line transformation of EEG scalp potentials into orthogonal source derivations. , 1975, Electroencephalography and clinical neurophysiology.