Functional Specialization in the Attention Network.

Spatial attention is comprised of neural mechanisms that boost sensory processing at a behaviorally relevant location while filtering out competing information. The present review examines functional specialization in the network of brain regions that directs such preferential processing. This attention network includes both cortical (e.g., frontal and parietal cortices) and subcortical structures (e.g., the superior colliculus and the pulvinar nucleus of the thalamus). Here, we piece together existing evidence that these various nodes of the attention network have dissociable functional roles by synthesizing results from electrophysiology and neuroimaging studies. We describe functional specialization across several dimensions (e.g., at different processing stages and within different behavioral contexts), while focusing on spatial attention as a dynamic process that unfolds over time. Functional contributions from each node of the attention network can change on a moment-to-moment timescale, providing the necessary cognitive flexibility for sampling from highly dynamic environments. Expected final online publication date for the Annual Review of Psychology, Volume 71 is January 4, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

[1]  R. Krauzlis,et al.  Superior colliculus and visual spatial attention. , 2013, Annual review of neuroscience.

[2]  Fang Fang,et al.  Sequential sampling of visual objects during sustained attention , 2017, PLoS biology.

[3]  S Shipp,et al.  The functional logic of cortico-pulvinar connections. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[5]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[6]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[7]  S. Petersen,et al.  Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. , 1985, Journal of neurophysiology.

[8]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[9]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[10]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[11]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[12]  Stefan Everling,et al.  Alpha Oscillations Modulate Preparatory Activity in Marmoset Area 8Ad , 2019, The Journal of Neuroscience.

[13]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  M. Pinsk,et al.  The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention , 2019, Nature Communications.

[15]  C. Olson,et al.  Low-frequency oscillations arising from competitive interactions between visual stimuli in macaque inferotemporal cortex. , 2005, Journal of neurophysiology.

[16]  G H Recanzone,et al.  Effects of attention on MT and MST neuronal activity during pursuit initiation. , 2000, Journal of neurophysiology.

[17]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[18]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[19]  D. Gitelman,et al.  Covert Visual Spatial Orienting and Saccades: Overlapping Neural Systems , 2000, NeuroImage.

[20]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[21]  Robert Ward,et al.  The Effects of Unilateral Pulvinar Damage in Humans on Reflexive Orienting and Filtering of Irrelevant Information , 2002, Behavioural neurology.

[22]  Sabine Kastner,et al.  Effects of Sustained Spatial Attention in the Human Lateral Geniculate Nucleus and Superior Colliculus , 2009, The Journal of Neuroscience.

[23]  Y. Saalmann,et al.  Rhythmic Sampling within and between Objects despite Sustained Attention at a Cued Location , 2013, Current Biology.

[24]  Takashi R Sato,et al.  Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field , 2005, The Journal of Neuroscience.

[25]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[26]  J. Parvizi Corticocentric myopia: old bias in new cognitive sciences , 2009, Trends in Cognitive Sciences.

[27]  Vivien A. Casagrande,et al.  Gating and control of primary visual cortex by pulvinar , 2012, Nature Neuroscience.

[28]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[29]  P. Fries,et al.  Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation , 2015, Current Biology.

[30]  Richard J Krauzlis,et al.  Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments , 2010, Nature Neuroscience.

[31]  C. Schroeder,et al.  Neuronal Mechanisms of Cortical Alpha Oscillations in Awake-Behaving Macaques , 2008, The Journal of Neuroscience.

[32]  Xiao-Jing Wang,et al.  Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex , 2016, Science Advances.

[33]  E. G. Jones,et al.  The thalamic matrix and thalamocortical synchrony , 2001, Trends in Neurosciences.

[34]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[35]  Tirin Moore,et al.  Prefrontal contributions to visual selective attention. , 2013, Annual review of neuroscience.

[36]  Albert Compte,et al.  Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits , 2016, The Journal of Neuroscience.

[37]  T Moore,et al.  Control of eye movements and spatial attention. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Sabine Kastner,et al.  Thalamic functions in distributed cognitive control , 2017, Nature Neuroscience.

[39]  M. Posner,et al.  Deficits in human visual spatial attention following thalamic lesions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Robert T Knight,et al.  Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception , 2017, Proceedings of the National Academy of Sciences.

[41]  Stephen J. Gotts,et al.  Cell-Type-Specific Synchronization of Neural Activity in FEF with V4 during Attention , 2012, Neuron.

[42]  Patrick Cavanagh,et al.  The blinking spotlight of attention , 2007, Proceedings of the National Academy of Sciences.

[43]  Tirin Moore,et al.  Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex , 2006, Neuron.

[44]  Hinze Hogendoorn,et al.  Voluntary Saccadic Eye Movements Ride the Attentional Rhythm , 2016, Journal of Cognitive Neuroscience.

[45]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[46]  D. Leopold,et al.  Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex , 2012, Current Biology.

[47]  Marisa Carrasco,et al.  Attention Reorients Periodically , 2016, Current Biology.

[48]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[49]  Sabine Kastner,et al.  The Puzzling Pulvinar , 2019, Neuron.

[50]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[51]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[52]  O. Tzeng,et al.  Segregation of visual selection and saccades in human frontal eye fields. , 2008, Cerebral cortex.

[53]  R. Knight,et al.  Prefrontal modulation of visual processing in humans , 2000, Nature Neuroscience.

[54]  S. Kastner,et al.  From Behavior to Neural Dynamics: An Integrated Theory of Attention , 2015, Neuron.

[55]  R. Wurtz,et al.  Guarding the gateway to cortex: attention in visual thalamus , 2008, Nature.

[56]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[57]  J. Downar,et al.  A multimodal cortical network for the detection of changes in the sensory environment , 2000, Nature Neuroscience.

[58]  Stephen M. Rao,et al.  Neural Basis of Endogenous and Exogenous Spatial Orienting: A Functional MRI Study , 1999, Journal of Cognitive Neuroscience.

[59]  Mark D'Esposito,et al.  Causal Evidence for the Role of Neuronal Oscillations in Top–Down and Bottom–Up Attention , 2019, Journal of Cognitive Neuroscience.

[60]  Josef Parvizi,et al.  Temporal Dynamics and Response Modulation across the Human Visual System in a Spatial Attention Task: An ECoG Study , 2018, The Journal of Neuroscience.

[61]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[62]  John J. Foxe,et al.  Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. , 2006, Journal of neurophysiology.

[63]  S. Bressler,et al.  Response preparation and inhibition: The role of the cortical sensorimotor beta rhythm , 2008, Neuroscience.

[64]  S. Kastner,et al.  A Rhythmic Theory of Attention , 2019, Trends in Cognitive Sciences.

[65]  Pascal Fries,et al.  A Microsaccadic Rhythm Modulates Gamma-Band Synchronization and Behavior , 2009, The Journal of Neuroscience.

[66]  Robert Desimone,et al.  Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4 , 2014, Nature Neuroscience.

[67]  F. Crick Function of the thalamic reticular complex: the searchlight hypothesis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[68]  S E Petersen,et al.  Visual responses of pulvinar and collicular neurons during eye movements of awake, trained macaques. , 1991, Journal of neurophysiology.

[69]  Diane M. Beck,et al.  Top-down and bottom-up mechanisms in biasing competition in the human brain , 2009, Vision Research.

[70]  Michel Thiebaut de Schotten,et al.  Cortical control of inhibition of return: Evidence from patients with inferior parietal damage and visual neglect , 2012, Neuropsychologia.

[71]  S. Yantis,et al.  Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. , 2007, Cerebral cortex.

[72]  John J. Foxe,et al.  The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention , 2011, Front. Psychology.

[73]  R. VanRullen,et al.  Spontaneous EEG oscillations reveal periodic sampling of visual attention , 2010, Proceedings of the National Academy of Sciences.

[74]  John H. R. Maunsell,et al.  No binocular rivalry in the LGN of alert macaque monkeys , 1996, Vision Research.

[75]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[76]  Maurizio Corbetta,et al.  Dynamics of EEG Rhythms Support Distinct Visual Selection Mechanisms in Parietal Cortex: A Simultaneous Transcranial Magnetic Stimulation and EEG Study , 2015, The Journal of Neuroscience.

[77]  Azeem Zaman,et al.  Single neurons may encode simultaneous stimuli by switching between activity patterns , 2018, Nature Communications.

[78]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[79]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[80]  Chi-Hung Juan,et al.  Dissociation of spatial attention and saccade preparation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Y. Saalmann,et al.  Cognitive and Perceptual Functions of the Visual Thalamus , 2011, Neuron.

[82]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[83]  Robert Desimone,et al.  Top–Down Attentional Deficits in Macaques with Lesions of Lateral Prefrontal Cortex , 2007, The Journal of Neuroscience.

[84]  C. Schroeder,et al.  Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. , 2000, Cerebral cortex.

[85]  R. Desimone,et al.  Interacting Roles of Attention and Visual Salience in V4 , 2003, Neuron.

[86]  P. Fries,et al.  Attention Samples Stimuli Rhythmically , 2012, Current Biology.

[87]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[88]  Raymond Klein,et al.  Inhibition of return , 2000, Trends in Cognitive Sciences.

[89]  Ivan N Pigarev,et al.  Neural Mechanisms of Visual Attention: How Top-Down Feedback Highlights Relevant Locations , 2007, Science.

[90]  R. Saunders,et al.  Theta Rhythmic Neuronal Activity and Reaction Times Arising from Cortical Receptive Field Interactions during Distributed Attention , 2018, Current Biology.

[91]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[92]  E. Halgren,et al.  The generation and propagation of the human alpha rhythm , 2017, Proceedings of the National Academy of Sciences.

[93]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[94]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[95]  M. Posner,et al.  The attention system of the human brain: 20 years after. , 2012, Annual review of neuroscience.

[96]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[97]  S. Petersen,et al.  Contributions of the pulvinar to visual spatial attention , 1987, Neuropsychologia.

[98]  R. Romo,et al.  α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking , 2011, Proceedings of the National Academy of Sciences.

[99]  Peter W Dicke,et al.  Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention , 2004, Nature Neuroscience.

[100]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[101]  N. J. Gandhi,et al.  Motor functions of the superior colliculus. , 2011, Annual review of neuroscience.

[102]  Alexandre Zénon,et al.  Attention deficits without cortical neuronal deficits , 2012, Nature.

[103]  O. Jensen,et al.  Microsaccade-rhythmic modulation of neural synchronization and coding within and across cortical areas V1 and V2 , 2018, PLoS biology.

[104]  Michael M. Halassa,et al.  Thalamic control of sensory selection in divided attention , 2015, Nature.

[105]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[106]  C. Constantinidis,et al.  Early involvement of prefrontal cortex in visual bottom up attention , 2012, Nature Neuroscience.

[107]  D. Spalding The Principles of Psychology , 1873, Nature.

[108]  John T. Serences,et al.  Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices , 2013, Nature Neuroscience.

[109]  T. Schenk,et al.  The Premotor theory of attention: Time to move on? , 2012, Neuropsychologia.

[110]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[111]  M. A. Steinmetz,et al.  Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. , 1995, Cerebral cortex.

[112]  Xoana G. Troncoso,et al.  Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. , 2008, Journal of vision.

[113]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[114]  D. Perani,et al.  The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man , 1986, Neuropsychologia.

[115]  M. Posner,et al.  Localization of cognitive operations in the human brain. , 1988, Science.

[116]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[117]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[118]  M. Pinsk,et al.  A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention , 2018, Neuron.

[119]  B. Dosher,et al.  External noise distinguishes attention mechanisms , 1998, Vision Research.

[120]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[121]  Huan Luo,et al.  Behavioral Oscillations in Attention: Rhythmic α Pulses Mediated through θ Band , 2014, The Journal of Neuroscience.

[122]  M. Carrasco,et al.  Attention alters appearance , 2004, Nature Neuroscience.

[123]  Peter Lakatos,et al.  Dynamics of Active Sensing and perceptual selection , 2010, Current Opinion in Neurobiology.

[124]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[125]  O. Jensen,et al.  Gamma Power Is Phase-Locked to Posterior Alpha Activity , 2008, PloS one.

[126]  J. Gottlieb,et al.  Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe , 2012, Nature Neuroscience.

[127]  Suliann Ben Hamed,et al.  A Functional Hierarchy within the Parietofrontal Network in Stimulus Selection and Attention Control , 2013, The Journal of Neuroscience.

[128]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[129]  Robert Desimone,et al.  Enhanced Neural Processing by Covert Attention only during Microsaccades Directed toward the Attended Stimulus , 2018, Neuron.

[130]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[131]  Panagiotis Sapountzis,et al.  Distinct roles of prefrontal and parietal areas in the encoding of attentional priority , 2018, Proceedings of the National Academy of Sciences.

[132]  G. Humphreys,et al.  Abnormal inhibition of return: A review and new data on patients with parietal lobe damage , 2006, Cognitive neuropsychology.

[133]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[134]  Jack J. Lin,et al.  Neural Mechanisms of Sustained Attention Are Rhythmic , 2018, Neuron.

[135]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[136]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[137]  J. Lisman Working Memory: The Importance of Theta and Gamma Oscillations , 2010, Current Biology.

[138]  R. Rafal,et al.  Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar , 2002, Nature Neuroscience.

[139]  R. Desimone,et al.  A backward progression of attentional effects in the ventral stream , 2009, Proceedings of the National Academy of Sciences.

[140]  Peter Brown,et al.  Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans , 2009, Current Biology.

[141]  Robert Desimone,et al.  Pulvinar-Cortex Interactions in Vision and Attention , 2016, Neuron.

[142]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[143]  R. Guillery,et al.  Exploring the Thalamus and Its Role in Cortical Function , 2005 .

[144]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.