Cryptography meets voting

We survey the contributions of the entire the- oretical computer science/cryptography community dur- ing 1975-2002 that impact the question of how to run ver- ifiable elections with secret ballots. The approach based on homomorphic encryptions is the most successful; one such scheme is sketched in detail and argued to be fea- sible to implement. It is explained precisely what these ideas accomplish but also what they do not accomplish, and a short history of election fraud throughout history is included.

[1]  Victor Shoup,et al.  Lower Bounds for Discrete Logarithms and Related Problems , 1997, EUROCRYPT.

[2]  Steven D. Galbraith,et al.  Cryptography and Computational Number Theory , 2001 .

[3]  N. Gisin,et al.  Quantum key distribution over 67 km with a plug , 2002 .

[4]  N. Gisin,et al.  Quantum cryptography , 1998 .

[5]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.

[6]  Martin Hirt,et al.  Upper Bounds on the Communication Complexity of Optimally Resilient Cryptographic Multiparty Computation , 2005, ASIACRYPT.

[7]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .

[8]  Ivan Damgård,et al.  The Theory and Implementation of an Electronic Voting System , 2003, Secure Electronic Voting.

[9]  Wieb Bosma,et al.  Algorithmic Number Theory , 2000, Lecture Notes in Computer Science.

[10]  Jens Groth,et al.  Non-interactive Zero-Knowledge Arguments for Voting , 2005, ACNS.

[11]  Ueli Maurer,et al.  Efficient Secure Multi-party Computation , 2000, ASIACRYPT.

[12]  Adam Tauman Kalai Generating Random Factored Numbers, Easily , 2002, SODA '02.

[13]  Bruce Schneier,et al.  Applied cryptography : protocols, algorithms, and source codein C , 1996 .

[14]  David Chaum,et al.  Secret-ballot receipts: True voter-verifiable elections , 2004, IEEE Security & Privacy Magazine.

[15]  Ken Thompson,et al.  Reflections on trusting trust , 1984, CACM.

[16]  Lein Harn,et al.  Public-Key Cryptosystem Based on the Discrete Logarithm Problem , 1992, AUSCRYPT.

[17]  Alexander Shen IP = SPACE: simplified proof , 1992, JACM.

[18]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[19]  Aggelos Kiayias,et al.  Self-tallying Elections and Perfect Ballot Secrecy , 2002, Public Key Cryptography.

[20]  H. John Heinz,et al.  Receipt-Free Homomorphic Elections and Write-in Voter Verified Ballots , 2004 .

[21]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[22]  Oded Goldreich,et al.  A randomized protocol for signing contracts , 1985, CACM.

[23]  Joan Boyar,et al.  A discrete logarithm implementation of perfect zero-knowledge blobs , 1990, Journal of Cryptology.

[24]  Torben P. Pedersen A Threshold Cryptosystem without a Trusted Party (Extended Abstract) , 1991, EUROCRYPT.

[25]  Warren D. Smith “ Asset voting ” scheme for multiwinner elections , 2005 .

[26]  Yvo Desmedt,et al.  Threshold Cryptosystems , 1989, CRYPTO.

[27]  Greg Palast,et al.  The Best Democracy Money Can Buy , 2002 .

[28]  Igor E. Shparlinski,et al.  On the Unpredictability of Bits of the Elliptic Curve Diffie--Hellman Scheme , 2001, CRYPTO.

[29]  B. Presnell,et al.  Misvotes, undervotes and overvotes: The 2000 presidential election in Florida , 2002 .

[30]  C. A. Neff Verifiable Mixing (Shuffling) of ElGamal Pairs , 2004 .

[31]  Vincent Rijmen,et al.  The Design of Rijndael: AES - The Advanced Encryption Standard , 2002 .

[32]  P. Erdös Remarks on number theory III. On addition chains , 1960 .

[33]  John Black,et al.  Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV , 2002, CRYPTO.

[34]  Rainer A. Rueppel,et al.  Message Recovery for Signature Schemes Based on the Discrete Logarithm Problem , 1994, EUROCRYPT.

[35]  Joe Kilian,et al.  Founding crytpography on oblivious transfer , 1988, STOC '88.

[36]  Allan Borodin,et al.  Fast Modular Transforms , 1974, J. Comput. Syst. Sci..

[37]  Martin Hirt,et al.  Upper Bounds on the Communication Complexity of Cryptographic Multiparty Computation , 2004 .

[38]  Martin Hirt,et al.  Multi party computation: efficient protocols, general adversaries, and voting , 2001 .

[39]  Robert A. Caro Means of Ascent , 1990 .

[40]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[41]  Stephen C. Pohlig,et al.  An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance , 2022, IEEE Trans. Inf. Theory.

[42]  Masayuki Abe,et al.  Universally Verifiable Mix-net with Verification Work Indendent of the Number of Mix-servers , 1998, EUROCRYPT.

[43]  Jörg Rothe,et al.  Heuristics Versus Completeness for Graph Coloring , 2000, Chic. J. Theor. Comput. Sci..

[44]  Ronald Cramer,et al.  A Secure and Optimally Efficient Multi-Authority Election Scheme ( 1 ) , 2000 .

[45]  Richard G. Larson,et al.  On a Primality Test of Solovay and Strassen , 1982, SIAM J. Comput..

[46]  Ivan Damgård,et al.  An Integer Commitment Scheme based on Groups with Hidden Order , 2001, IACR Cryptol. ePrint Arch..

[47]  Markus Jakobsson,et al.  Mix and Match: Secure Function Evaluation via Ciphertexts , 2000, ASIACRYPT.

[48]  Matthew K. Franklin,et al.  Multi-Autority Secret-Ballot Elections with Linear Work , 1996, EUROCRYPT.

[49]  Jens Groth A Verifiable Secret Shuffle of Homomorphic Encryptions , 2003, Public Key Cryptography.

[50]  Nigel P. Smart,et al.  The Discrete Logarithm Problem on Elliptic Curves of Trace One , 1999, Journal of Cryptology.

[51]  Antoine Joux,et al.  Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method , 2003, Math. Comput..

[52]  Yvo Desmedt,et al.  Threshold cryptography , 1994, Eur. Trans. Telecommun..

[53]  Edlyn Teske On random walks for Pollard's rho method , 2001, Math. Comput..

[54]  Jacques Traoré,et al.  A fair and efficient solution to the socialist millionaires' problem , 2001, Discret. Appl. Math..

[55]  A. Gibbard Manipulation of Schemes That Mix Voting with Chance , 1977 .

[56]  Berry Schoenmakers,et al.  A Simple Publicly Verifiable Secret Sharing Scheme and Its Application to Electronic , 1999, CRYPTO.

[57]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[58]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[59]  J. Pollard,et al.  Monte Carlo methods for index computation () , 1978 .

[60]  Valtteri Niemi,et al.  Efficient Voting with No Selling of Votes , 1999, Theor. Comput. Sci..

[61]  Barry Nalebuff,et al.  An Introduction to Vote-Counting Schemes , 1995 .

[62]  Hugo Krawczyk,et al.  Robust Threshold DSS Signatures , 1996, Inf. Comput..

[63]  Markus Jakobsson,et al.  Making Mix Nets Robust for Electronic Voting by Randomized Partial Checking , 2002, USENIX Security Symposium.

[64]  Tatsuaki Okamoto,et al.  Receipt-Free Electronic Voting Schemes for Large Scale Elections , 1997, Security Protocols Workshop.

[65]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[66]  B. Harris PROBABILITY DISTRIBUTIONS RELATED TO RANDOM MAPPINGS , 1960 .

[67]  John H. Fund Stealing Elections: How Voter Fraud Threatens Our Democracy , 2004 .

[68]  Peter W. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .

[69]  André Zúquete,et al.  REVS – A ROBUST ELECTRONIC VOTING SYSTEM , 2003 .

[70]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[71]  C. Andrew Neff,et al.  A verifiable secret shuffle and its application to e-voting , 2001, CCS '01.

[72]  Ivan Damgård,et al.  Zero-Knowledge Proofs for Finite Field Arithmetic; or: Can Zero-Knowledge be for Free? , 1998, CRYPTO.

[73]  B. Harris,et al.  Black Box Voting: Ballot Tampering in the 21st Century , 2003 .

[74]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[75]  Fabrice Boudot,et al.  Efficient Proofs that a Committed Number Lies in an Interval , 2000, EUROCRYPT.

[76]  Ivan Damgård,et al.  A Generalisation, a Simplification and Some Applications of Paillier's Probabilistic Public-Key System , 2001, Public Key Cryptography.

[77]  Bernard P. Zajac Applied cryptography: Protocols, algorithms, and source code in C , 1994 .

[78]  M. Rabin,et al.  Randomized algorithms in number theory , 1985 .

[79]  Jerome A. Solinas,et al.  Efficient Arithmetic on Koblitz Curves , 2000, Des. Codes Cryptogr..

[80]  Tal Rabin,et al.  Simplified VSS and fast-track multiparty computations with applications to threshold cryptography , 1998, PODC '98.

[81]  Atsuko Miyaji,et al.  Elliptic Curves over Fp Suitable for Cryptosystems , 1992, AUSCRYPT.

[82]  Jan Camenisch,et al.  Proving in Zero-Knowledge that a Number Is the Product of Two Safe Primes , 1998, EUROCRYPT.

[83]  Jacques Stern,et al.  Provably Secure Blind Signature Schemes , 1996, ASIACRYPT.

[84]  Atsushi Fujioka,et al.  A Practical Secret Voting Scheme for Large Scale Elections , 1992, AUSCRYPT.

[85]  Helger Lipmaa,et al.  On Diophantine Complexity and Statistical Zero-Knowledge Arguments , 2003, ASIACRYPT.

[86]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[87]  David S. Johnson,et al.  Stockmeyer: some simplified np-complete graph problems , 1976 .

[88]  Dan S. Wallach,et al.  Analysis of an electronic voting system , 2004, IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004.

[89]  David Chaum,et al.  Minimum Disclosure Proofs of Knowledge , 1988, J. Comput. Syst. Sci..

[90]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[91]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[92]  Andrew Petro,et al.  Small vote manipulations can swing elections , 2004, CACM.

[93]  Joe Kilian,et al.  An Efficient Noninteractive Zero-Knowledge Proof System for NP with General Assumptions , 1998, Journal of Cryptology.

[94]  Markus Jakobsson,et al.  Designated Verifier Proofs and Their Applications , 1996, EUROCRYPT.

[95]  Martin Dietzfelbinger,et al.  Primality Testing in Polynomial Time , 2004, Lecture Notes in Computer Science.

[96]  Kazue Sako,et al.  An Efficient Scheme for Proving a Shuffle , 2001, CRYPTO.

[97]  N. Tideman The Single Transferable Vote , 1995 .

[98]  P. Simon American Pharaoh, Mayor Richard J. Daley: His Battle for Chicago and the Nation , 2001 .

[99]  G. Frey,et al.  A remark concerning m -divisibility and the discrete logarithm in the divisor class group of curves , 1994 .

[100]  David Chaum,et al.  Untraceable electronic mail, return addresses, and digital pseudonyms , 1981, CACM.

[101]  Moni Naor,et al.  Visual Cryptography , 1994, Encyclopedia of Multimedia.

[102]  Valtteri Niemi,et al.  Secure Vickrey Auctions without Threshold Trust , 2002, Financial Cryptography.

[103]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[104]  Masayuki Abe,et al.  Remarks on Mix-Network Based on Permutation Networks , 2001, Public Key Cryptography.

[105]  Eric Bach,et al.  Toward A Theory of Pollard's Rho Method , 1991, Inf. Comput..

[106]  Arjen K. Lenstra,et al.  Unbelievable Security. Matching AES Security Using Public Key Systems , 2001, ASIACRYPT.

[107]  Markus Jakobsson,et al.  Coercion-resistant electronic elections , 2005, WPES '05.

[108]  Igor E. Shparlinski,et al.  Cryptography and computational number theory , 2001 .

[109]  Ivan Damgård,et al.  Zero-Knowledge Proofs for Finite Field Arithmetic or: Can Zero-Knowledge be for Free? , 1997 .

[110]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[111]  Masayuki Abe,et al.  How to Date Blind Signatures , 1996, ASIACRYPT.

[112]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[113]  Eric Bach,et al.  How to Generate Factored Random Numbers , 1988, SIAM J. Comput..

[114]  Jan Camenisch,et al.  Blind Signatures Based on the Discrete Logarithm Problem , 1994, EUROCRYPT.

[115]  Peter Winkler,et al.  Comparing information without leaking it , 1996, CACM.

[116]  Stuart Haber,et al.  How to time-stamp a digital document , 1990, Journal of Cryptology.

[117]  Kazue Sako,et al.  Efficient Receipt-Free Voting Based on Homomorphic Encryption , 2000, EUROCRYPT.

[118]  Peter Hellekalek,et al.  Empirical evidence concerning AES , 2003, TOMC.