Object Modeling and Recognition from Sparse, Noisy Data via Voxel Depth Carving

In this work, we make the case for using volumetric information for shape reconstruction and recognition from noisy depth images for robotic manipulation. We provide an efficient algorithm, Voxel Depth Carving (a variant of Occupancy Grid Mapping) which accomplishes this goal. Real-world experiments with lasers, RGB-D cameras, and simulated sensors in both 2D and 3D verify the effectiveness of our algorithm in comparison to traditional point-cloud based methods.

[1]  Renato Pajarola,et al.  Shape Reconstruction from Raw Point Clouds using Depth Carving , 2012, Eurographics.

[2]  A. Laurentini,et al.  The Visual Hull Concept for Silhouette-Based Image Understanding , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Shahram Izadi,et al.  Modeling Kinect Sensor Noise for Improved 3D Reconstruction and Tracking , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[4]  Kiriakos N. Kutulakos,et al.  A Theory of Shape by Space Carving , 2000, International Journal of Computer Vision.

[5]  Siddhartha S. Srinivasa,et al.  Exploiting Passthrough Information for Multi-view Object Reconstruction with Sparse and Noisy Laser Data , 2010 .

[6]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[7]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[8]  Peter K. Allen,et al.  Data-driven grasping , 2011, Auton. Robots.

[9]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[10]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Leif Kobbelt,et al.  Robust reconstruction of watertight 3D models from non-uniformly sampled point clouds without normal information , 2006, SGP '06.

[12]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[13]  Vincent Lepetit,et al.  Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes , 2012, ACCV.

[14]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[15]  D. Prasad Survey of The Problem of Object Detection In Real Images , 2012 .

[16]  Nikolaos Canterakis,et al.  3D Zernike Moments and Zernike Affine Invariants for 3D Image Analysis and Recognition , 1999 .

[17]  Zoltan-Csaba Marton,et al.  On fast surface reconstruction methods for large and noisy point clouds , 2009, 2009 IEEE International Conference on Robotics and Automation.

[18]  Al Staples-Moore,et al.  Network Flows and the Max-flow Min-cut Theorem , 2022 .

[19]  James F. O'Brien,et al.  Spectral surface reconstruction from noisy point clouds , 2004, SGP '04.

[20]  D. R. Fulkerson,et al.  A Simple Algorithm for Finding Maximal Network Flows and an Application to the Hitchcock Problem , 1957, Canadian Journal of Mathematics.

[21]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[22]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[23]  Peter Brook,et al.  Bayesian Grasp Planning , 2011 .

[24]  Silvio Savarese,et al.  Representations and Techniques for 3D Object Recognition and Scene Interpretation , 2011, Representations and Techniques for 3D Object Recognition and Scene Interpretation.

[25]  Dieter Fox,et al.  Object Recognition in 3D Point Clouds Using Web Data and Domain Adaptation , 2010, Int. J. Robotics Res..

[26]  Daniel Cohen-Or,et al.  GlobFit: consistently fitting primitives by discovering global relations , 2011, ACM Trans. Graph..

[27]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.