Tensor Clustering with Planted Structures: Statistical Optimality and Computational Limits

This paper studies the statistical and computational limits of high-order clustering with planted structures. We focus on two clustering models, constant high-order clustering (CHC) and rank-one higher-order clustering (ROHC), and study the methods and theory for testing whether a cluster exists (detection) and identifying the support of cluster (recovery). Specifically, we identify the sharp boundaries of signal-to-noise ratio for which CHC and ROHC detection/recovery are statistically possible. We also develop the tight computational thresholds: when the signal-to-noise ratio is below these thresholds, we prove that polynomial-time algorithms cannot solve these problems under the computational hardness conjectures of hypergraphic planted clique (HPC) detection and hypergraphic planted dense subgraph (HPDS) recovery. We also propose polynomial-time tensor algorithms that achieve reliable detection and recovery when the signal-to-noise ratio is above these thresholds. Both sparsity and tensor structures yield the computational barriers in high-order tensor clustering. The interplay between them results in significant differences between high-order tensor clustering and matrix clustering in literature in aspects of statistical and computational phase transition diagrams, algorithmic approaches, hardness conjecture, and proof techniques. To our best knowledge, we are the first to give a thorough characterization of the statistical and computational trade-off for such a double computational-barrier problem. Finally, we provide evidence for the computational hardness conjectures of HPC detection and HPDS recovery.

[1]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[2]  Ryan O'Donnell,et al.  Analysis of Boolean Functions , 2014, ArXiv.

[3]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[4]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[5]  Andrea Montanari,et al.  Finding One Community in a Sparse Graph , 2015, Journal of Statistical Physics.

[6]  Jonathan Shi,et al.  Tensor principal component analysis via sum-of-square proofs , 2015, COLT.

[7]  Florent Krzakala,et al.  Statistical and computational phase transitions in spiked tensor estimation , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[8]  E. Arias-Castro,et al.  Community Detection in Sparse Random Networks , 2013, 1308.2955.

[9]  Michael I. Jordan,et al.  Computational and statistical tradeoffs via convex relaxation , 2012, Proceedings of the National Academy of Sciences.

[10]  Quentin Berthet,et al.  Statistical and Computational Rates in Graph Logistic Regression , 2020, AISTATS.

[11]  Prasad Raghavendra,et al.  High-dimensional estimation via sum-of-squares proofs , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[12]  Guy Bresler,et al.  Reducibility and Statistical-Computational Gaps from Secret Leakage , 2020, COLT 2020.

[13]  Roded Sharan,et al.  Discovering statistically significant biclusters in gene expression data , 2002, ISMB.

[14]  Benjamin Rossman,et al.  The Monotone Complexity of k-clique on Random Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[15]  Moses Charikar,et al.  On Finding Dense Common Subgraphs , 2018, ArXiv.

[16]  Wasim Huleihel,et al.  Universality of Computational Lower Bounds for Submatrix Detection , 2019, COLT.

[17]  Sivaraman Balakrishnan,et al.  Minimax Localization of Structural Information in Large Noisy Matrices , 2011, NIPS.

[18]  Yudong Chen,et al.  Statistical-Computational Tradeoffs in Planted Problems and Submatrix Localization with a Growing Number of Clusters and Submatrices , 2014, J. Mach. Learn. Res..

[19]  Sanjeev Arora,et al.  Computational complexity and information asymmetry in financial products , 2011, Commun. ACM.

[20]  Daniel M. Kane,et al.  Statistical Query Lower Bounds for Robust Estimation of High-Dimensional Gaussians and Gaussian Mixtures , 2016, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[21]  Michael Dinitz,et al.  Everywhere-Sparse Spanners via Dense Subgraphs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[22]  Avi Wigderson,et al.  Sum-of-Squares Lower Bounds for Sparse PCA , 2015, NIPS.

[24]  C. Scovel,et al.  Concentration of the hypergeometric distribution , 2005 .

[25]  David Gamarnik,et al.  The Landscape of the Planted Clique Problem: Dense subgraphs and the Overlap Gap Property , 2019, ArXiv.

[26]  Pascal Koiran,et al.  Hidden Cliques and the Certification of the Restricted Isometry Property , 2012, IEEE Transactions on Information Theory.

[27]  E. Arias-Castro,et al.  Community detection in dense random networks , 2014 .

[28]  Anru Zhang,et al.  ISLET: Fast and Optimal Low-rank Tensor Regression via Importance Sketching , 2020, SIAM J. Math. Data Sci..

[29]  Yaniv Plan,et al.  Average-case hardness of RIP certification , 2016, NIPS.

[30]  Anru R. Zhang,et al.  Tensor SVD: Statistical and Computational Limits , 2017, IEEE Transactions on Information Theory.

[31]  Afonso S. Bandeira,et al.  Notes on Computational Hardness of Hypothesis Testing: Predictions using the Low-Degree Likelihood Ratio , 2019, ArXiv.

[32]  Ilias Diakonikolas,et al.  Efficient Algorithms and Lower Bounds for Robust Linear Regression , 2018, SODA.

[33]  P. Rigollet,et al.  Optimal detection of sparse principal components in high dimension , 2012, 1202.5070.

[34]  Yu. I. Ingster,et al.  Sharp Variable Selection of a Sparse Submatrix in a High-Dimensional Noisy Matrix , 2013, 1303.5647.

[35]  Andrea Montanari,et al.  Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems , 2015, COLT.

[36]  Ron Shamir,et al.  A hierarchical Bayesian model for flexible module discovery in three-way time-series data , 2015, Bioinform..

[37]  Yihong Wu,et al.  Computational Barriers in Minimax Submatrix Detection , 2013, ArXiv.

[38]  L. Wasserman,et al.  Statistical and computational tradeoffs in biclustering , 2011 .

[39]  Han Liu,et al.  Provable sparse tensor decomposition , 2015, 1502.01425.

[40]  Bruce Hajek,et al.  Information limits for recovering a hidden community , 2015, 2016 IEEE International Symposium on Information Theory (ISIT).

[41]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[42]  Venkat Chandrasekaran,et al.  Finding Planted Subgraphs with Few Eigenvalues using the Schur-Horn Relaxation , 2016, SIAM J. Optim..

[43]  Robert Krauthgamer,et al.  Finding and certifying a large hidden clique in a semirandom graph , 2000, Random Struct. Algorithms.

[44]  Anru R. Zhang,et al.  Optimal Sparse Singular Value Decomposition for High-Dimensional High-Order Data , 2018, Journal of the American Statistical Association.

[45]  Afonso S. Bandeira,et al.  Subexponential-Time Algorithms for Sparse PCA , 2019, ArXiv.

[46]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[47]  Pasin Manurangsi,et al.  Sherali-Adams Integrality Gaps Matching the Log-Density Threshold , 2018, APPROX-RANDOM.

[48]  Avi Wigderson,et al.  Sum-of-squares Lower Bounds for Planted Clique , 2015, STOC.

[49]  Michael Dinitz,et al.  Minimizing the Union: Tight Approximations for Small Set Bipartite Vertex Expansion , 2016, SODA.

[50]  David Tuck,et al.  An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information , 2009, Gene regulation and systems biology.

[51]  Rob Knight,et al.  Temporal variability is a personalized feature of the human microbiome , 2014, Genome Biology.

[52]  Ankur Moitra,et al.  Noisy tensor completion via the sum-of-squares hierarchy , 2015, Mathematical Programming.

[53]  George Michailidis,et al.  Biclustering Three-Dimensional Data Arrays With Plaid Models , 2014 .

[54]  Jiaming Xu,et al.  Statistical Problems with Planted Structures: Information-Theoretical and Computational Limits , 2018, Information-Theoretic Methods in Data Science.

[55]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[56]  Prasad Raghavendra,et al.  The Power of Sum-of-Squares for Detecting Hidden Structures , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[57]  Jian Pei,et al.  Mining coherent gene clusters from gene-sample-time microarray data , 2004, KDD.

[58]  Santosh S. Vempala,et al.  The Hidden Hubs Problem , 2017, COLT.

[59]  Stephen A. Vavasis,et al.  Nuclear norm minimization for the planted clique and biclique problems , 2009, Math. Program..

[60]  Yuetian Luo,et al.  Open Problem: Average-Case Hardness of Hypergraphic Planted Clique Detection , 2020, COLT 2020.

[61]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[62]  Benjamin Rossman,et al.  On the constant-depth complexity of k-clique , 2008, STOC.

[63]  Curtis Huttenhower,et al.  Microbial Co-occurrence Relationships in the Human Microbiome , 2012, PLoS Comput. Biol..

[64]  Ming Yuan,et al.  Statistically Optimal and Computationally Efficient Low Rank Tensor Completion from Noisy Entries , 2017, The Annals of Statistics.

[65]  Rungang Han,et al.  An Optimal Statistical and Computational Framework for Generalized Tensor Estimation , 2020, The Annals of Statistics.

[66]  Ming Yuan,et al.  On Polynomial Time Methods for Exact Low-Rank Tensor Completion , 2017, Found. Comput. Math..

[67]  Yun S. Song,et al.  THREE-WAY CLUSTERING OF MULTI-TISSUE MULTI-INDIVIDUAL GENE EXPRESSION DATA USING SEMI-NONNEGATIVE TENSOR DECOMPOSITION. , 2019, The annals of applied statistics.

[68]  Quentin Berthet,et al.  Optimal link prediction with matrix logistic regression , 2018, 1803.07054.

[69]  A. Nobel,et al.  On the maximal size of large-average and ANOVA-fit submatrices in a Gaussian random matrix. , 2010, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.

[70]  Yudong Chen,et al.  Incoherence-Optimal Matrix Completion , 2013, IEEE Transactions on Information Theory.

[71]  Bruce E. Hajek,et al.  Computational Lower Bounds for Community Detection on Random Graphs , 2014, COLT.

[72]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[73]  Anima Anandkumar,et al.  Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-1 Updates , 2014, ArXiv.

[74]  Yihong Wu,et al.  Statistical and Computational Limits for Sparse Matrix Detection , 2018, The Annals of Statistics.

[75]  Ambedkar Dukkipati,et al.  Consistency of spectral hypergraph partitioning under planted partition model , 2015, 1505.01582.

[76]  T. Cai,et al.  Optimal estimation and rank detection for sparse spiked covariance matrices , 2013, Probability theory and related fields.

[77]  Quentin Berthet,et al.  Statistical and computational trade-offs in estimation of sparse principal components , 2014, 1408.5369.

[78]  Samuel B. Hopkins,et al.  Bayesian estimation from few samples: community detection and related problems , 2017, ArXiv.

[79]  J. Pitman Some Probabilistic Aspects of Set Partitions , 1997 .

[80]  David Tse,et al.  Tensor Biclustering , 2017, NIPS.

[81]  Yuval Peres,et al.  Finding Hidden Cliques in Linear Time with High Probability , 2010, Combinatorics, Probability and Computing.

[82]  Benjamin Rossman The Monotone Complexity of k-clique on Random Graphs , 2010, FOCS.

[83]  Afonso S. Bandeira,et al.  The Average-Case Time Complexity of Certifying the Restricted Isometry Property , 2020, IEEE Transactions on Information Theory.

[84]  Achim Klenke,et al.  Probability theory - a comprehensive course , 2008, Universitext.

[85]  Michel X. Goemans,et al.  Community detection in hypergraphs, spiked tensor models, and Sum-of-Squares , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[86]  Anru R. Zhang,et al.  Rate-Optimal Perturbation Bounds for Singular Subspaces with Applications to High-Dimensional Statistics , 2016, 1605.00353.

[87]  Genevera I. Allen,et al.  Convex biclustering , 2014, Biometrics.

[88]  Andrea Montanari,et al.  A statistical model for tensor PCA , 2014, NIPS.

[89]  Fan Zhou,et al.  The Sup-norm Perturbation of HOSVD and Low Rank Tensor Denoising , 2019, J. Mach. Learn. Res..

[90]  Noga Alon,et al.  Testing k-wise and almost k-wise independence , 2007, STOC '07.

[91]  Rui Henriques,et al.  Triclustering Algorithms for Three-Dimensional Data Analysis , 2018, ACM Comput. Surv..

[92]  Guy Bresler,et al.  Average-Case Lower Bounds for Learning Sparse Mixtures, Robust Estimation and Semirandom Adversaries , 2019, ArXiv.

[93]  Guy Bresler,et al.  Optimal Average-Case Reductions to Sparse PCA: From Weak Assumptions to Strong Hardness , 2019, COLT.

[94]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[95]  Tengyuan Liang,et al.  Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix , 2015, 1502.01988.

[96]  Anthony K. H. Tung,et al.  Mining frequent closed cubes in 3D datasets , 2006, VLDB.

[97]  Wasim Huleihel,et al.  Reducibility and Computational Lower Bounds for Problems with Planted Sparse Structure , 2018, COLT.

[98]  Afonso S. Bandeira,et al.  Statistical limits of spiked tensor models , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[99]  Madhu Sudan,et al.  Limits of local algorithms over sparse random graphs , 2013, ITCS.

[100]  Frank McSherry,et al.  Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[101]  Philippe Rigollet,et al.  Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.

[102]  Panos M. Pardalos,et al.  Biclustering in data mining , 2008, Comput. Oper. Res..

[103]  Pravesh Kothari,et al.  A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[104]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[105]  Santosh S. Vempala,et al.  University of Birmingham On the Complexity of Random Satisfiability Problems with Planted Solutions , 2018 .

[106]  Afonso S. Bandeira,et al.  Computationally efficient sparse clustering , 2020, ArXiv.

[107]  Noga Alon,et al.  Finding a large hidden clique in a random graph , 1998, SODA '98.

[108]  Cristopher Moore,et al.  The Kikuchi Hierarchy and Tensor PCA , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[109]  Zhaoran Wang,et al.  Sharp Computational-Statistical Phase Transitions via Oracle Computational Model , 2015 .

[110]  Harrison H. Zhou,et al.  Sparse CCA: Adaptive Estimation and Computational Barriers , 2014, 1409.8565.

[111]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[112]  U. Feige,et al.  Finding hidden cliques in linear time , 2009 .

[113]  Kevin A. Lai,et al.  Label optimal regret bounds for online local learning , 2015, COLT.

[114]  Zhuoran Yang,et al.  Curse of Heterogeneity: Computational Barriers in Sparse Mixture Models and Phase Retrieval , 2018, ArXiv.

[115]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[116]  Santosh S. Vempala,et al.  Statistical Algorithms and a Lower Bound for Detecting Planted Cliques , 2012, J. ACM.

[117]  Kelvin Sim,et al.  Discovering Correlated Subspace Clusters in 3D Continuous-Valued Data , 2010, 2010 IEEE International Conference on Data Mining.

[118]  Yu. I. Ingster,et al.  Detection of a sparse submatrix of a high-dimensional noisy matrix , 2011, 1109.0898.

[119]  Dong Xia,et al.  Community Detection for Hypergraph Networks via Regularized Tensor Power Iteration , 2019 .