Democratic group signatures with threshold traceability

This paper presents a concrete democratic group signature scheme which holds (t, n)-threshold traceability. In the scheme, the capability of tracing the actual signer is distributed among n group members. It gives a valid democratic group signature such that any subset with more than t members can jointly reconstruct a secret and reveal the identity of the signer. Any active adversary cannot do this even if he can corrupt up to t − 1 group members.

[1]  Koutarou Suzuki,et al.  Traceable Ring Signature , 2007, Public Key Cryptography.

[2]  Jens Groth,et al.  Fully Anonymous Group Signatures without Random Oracles , 2007, IACR Cryptol. ePrint Arch..

[3]  J. Camenisch,et al.  Proof systems for general statements about discrete logarithms , 1997 .

[4]  Ivan Damgård,et al.  Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols , 1994, CRYPTO.

[5]  Victor K.-W. Wei A Bilinear Spontaneous Anonymous Threshold Signature for Ad Hoc Groups , 2004, IACR Cryptol. ePrint Arch..

[6]  Paz Morillo,et al.  CCA2-Secure Threshold Broadcast Encryption with Shorter Ciphertexts , 2007, ProvSec.

[7]  Yael Tauman Kalai,et al.  How to Leak a Secret: Theory and Applications of Ring Signatures , 2001, Essays in Memory of Shimon Even.

[8]  Ahmad-Reza Sadeghi,et al.  Linkable Democratic Group Signatures , 2006, IACR Cryptol. ePrint Arch..

[9]  Markus Stadler,et al.  Publicly Verifiable Secret Sharing , 1996, EUROCRYPT.

[10]  Jacques Stern,et al.  Threshold Ring Signatures and Applications to Ad-hoc Groups , 2002, CRYPTO.

[11]  Mark Manulis,et al.  Democratic group signatures: on an example of joint ventures , 2006, ASIACCS '06.

[12]  Aggelos Kiayias,et al.  Anonymous Identification in Ad Hoc Groups , 2004, EUROCRYPT.

[13]  Kwangjo Kim,et al.  ID-Based Blind Signature and Ring Signature from Pairings , 2002, ASIACRYPT.

[14]  Mihir Bellare,et al.  Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions , 2003, EUROCRYPT.

[15]  Mihir Bellare,et al.  Foundations of Group Signatures: The Case of Dynamic Groups , 2005, CT-RSA.

[16]  Mihir Bellare,et al.  GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks , 2002, CRYPTO.

[17]  David Chaum,et al.  Group Signatures , 1991, EUROCRYPT.

[18]  Jan Camenisch,et al.  Efficient Group Signature Schemes for Large Groups (Extended Abstract) , 1997, CRYPTO.

[19]  Jacques Stern,et al.  Proofs of Knowledge for Non-monotone Discrete-Log Formulae and Applications , 2002, ISC.

[20]  Jan Camenisch,et al.  Efficient group signature schemes for large groups , 1997 .

[21]  Joseph K. Liu,et al.  Separable Linkable Threshold Ring Signatures , 2004, INDOCRYPT.

[22]  Joseph K. Liu,et al.  Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups (Extended Abstract) , 2004, ACISP.

[23]  Germán Sáez,et al.  A provably secure ID-based ring signature scheme , 2003, IACR Cryptol. ePrint Arch..

[24]  Joseph K. Liu,et al.  Linkable Ring Signatures: Security Models and New Schemes , 2005, ICCSA.

[25]  Berry Schoenmakers,et al.  A Simple Publicly Verifiable Secret Sharing Scheme and Its Application to Electronic , 1999, CRYPTO.

[26]  Hovav Shacham,et al.  Short Group Signatures , 2004, CRYPTO.