Balanced model reduction of partially observed Langevin equations: an averaging principle

We study balanced model reduction of partially observed stochastic differential equations of Langevin type. Upon balancing, the Langevin equation turns into a singularly perturbed system of equations with slow and fast degrees of freedom. We prove that in the limit of vanishing small Hankel singular values (i.e. for infinite scale separation between fast and slow variables), its solution converges to the solution of a reduced-order Langevin equation. The approach is illustrated with several numerical examples, and we discuss the relation to model reduction of deterministic control systems having an underlying Hamiltonian structure.

[1]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[2]  Horace Lamb,et al.  On a Peculiarity of the Wave‐System due to the Free Vibrations of a Nucleus in an Extended Medium , 1900 .

[3]  Harold S. Park,et al.  A phonon heat bath approach for the atomistic and multiscale simulation of solids , 2007 .

[4]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[5]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[6]  Carsten Hartmann,et al.  Balancing of dissipative Hamiltonian systems , 2009 .

[7]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[8]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[9]  A. Veretennikov,et al.  On the poisson equation and diffusion approximation 3 , 2001, math/0506596.

[10]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[11]  Xiantao Li,et al.  A coarse‐grained molecular dynamics model for crystalline solids , 2010 .

[12]  Carsten Hartmann,et al.  Balanced Truncation of Linear Second-Order Systems: A Hamiltonian Approach , 2010, Multiscale Model. Simul..

[13]  Jerzy Zabczyk,et al.  Controllability of stochastic linear systems , 1981 .

[14]  Brian D. O. Anderson,et al.  Singular perturbation approximation of balanced systems , 1989 .

[15]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[16]  ON RATE OF MIXING AND THE AVERAGING PRINCIPLE FOR HYPOELLIPTIC STOCHASTIC DIFFERENTIAL EQUATIONS , 1989 .

[17]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[18]  R. Kupferman Fractional Kinetics in Kac–Zwanzig Heat Bath Models , 2004 .

[19]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[20]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[21]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[22]  J. M. A. Scherpen,et al.  Balancing for nonlinear systems , 1993 .

[23]  Tamar Schlick,et al.  Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .

[24]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[25]  A. Balakrishnan Applied Functional Analysis , 1976 .

[26]  Carsten Hartmann,et al.  Balancing of partially-observed stochastic differential equations , 2008, 2008 47th IEEE Conference on Decision and Control.

[27]  G. W. FonDt Statistical Mechanics of Assemblies of Coupled Oscillators * , 2022 .

[28]  S. Varadhan,et al.  On the Support of Diffusion Processes with Applications to the Strong Maximum Principle , 1972 .

[29]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[30]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[31]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[32]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[33]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[34]  Hiroshi Kunita,et al.  A classification of the second order degenerate elliptic operators and its probabilistic characterization , 1974 .

[35]  E Weinan,et al.  Variational boundary conditions for molecular dynamics simulations of crystalline solids at finite temperature: Treatment of the thermal bath , 2007 .

[36]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[37]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[38]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[39]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[41]  Paul Van Dooren,et al.  A collection of benchmark examples for model reduction of linear time invariant dynamical systems. , 2002 .

[42]  A. Merzon,et al.  Scattering in the nonlinear Lamb system , 2009 .