Balanced model reduction of partially observed Langevin equations: an averaging principle
暂无分享,去创建一个
[1] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[2] Horace Lamb,et al. On a Peculiarity of the Wave‐System due to the Free Vibrations of a Nucleus in an Extended Medium , 1900 .
[3] Harold S. Park,et al. A phonon heat bath approach for the atomistic and multiscale simulation of solids , 2007 .
[4] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[5] Clifford T. Mullis,et al. Synthesis of minimum roundoff noise fixed point digital filters , 1976 .
[6] Carsten Hartmann,et al. Balancing of dissipative Hamiltonian systems , 2009 .
[7] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[8] Peter Benner,et al. Dimension Reduction of Large-Scale Systems , 2005 .
[9] A. Veretennikov,et al. On the poisson equation and diffusion approximation 3 , 2001, math/0506596.
[10] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[11] Xiantao Li,et al. A coarse‐grained molecular dynamics model for crystalline solids , 2010 .
[12] Carsten Hartmann,et al. Balanced Truncation of Linear Second-Order Systems: A Hamiltonian Approach , 2010, Multiscale Model. Simul..
[13] Jerzy Zabczyk,et al. Controllability of stochastic linear systems , 1981 .
[14] Brian D. O. Anderson,et al. Singular perturbation approximation of balanced systems , 1989 .
[15] 池田 信行,et al. Stochastic differential equations and diffusion processes , 1981 .
[16] ON RATE OF MIXING AND THE AVERAGING PRINCIPLE FOR HYPOELLIPTIC STOCHASTIC DIFFERENTIAL EQUATIONS , 1989 .
[17] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[18] R. Kupferman. Fractional Kinetics in Kac–Zwanzig Heat Bath Models , 2004 .
[19] R. Kubo. The fluctuation-dissipation theorem , 1966 .
[20] L. Rogers. Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .
[21] Alexandre J. Chorin,et al. Optimal prediction with memory , 2002 .
[22] J. M. A. Scherpen,et al. Balancing for nonlinear systems , 1993 .
[23] Tamar Schlick,et al. Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .
[24] S. Ethier,et al. Markov Processes: Characterization and Convergence , 2005 .
[25] A. Balakrishnan. Applied Functional Analysis , 1976 .
[26] Carsten Hartmann,et al. Balancing of partially-observed stochastic differential equations , 2008, 2008 47th IEEE Conference on Decision and Control.
[27] G. W. FonDt. Statistical Mechanics of Assemblies of Coupled Oscillators * , 2022 .
[28] S. Varadhan,et al. On the Support of Diffusion Processes with Applications to the Strong Maximum Principle , 1972 .
[29] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .
[30] B. Øksendal. Stochastic differential equations : an introduction with applications , 1987 .
[31] Grigorios A. Pavliotis,et al. Multiscale Methods: Averaging and Homogenization , 2008 .
[32] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[33] Edward Nelson. Dynamical Theories of Brownian Motion , 1967 .
[34] Hiroshi Kunita,et al. A classification of the second order degenerate elliptic operators and its probabilistic characterization , 1974 .
[35] E Weinan,et al. Variational boundary conditions for molecular dynamics simulations of crystalline solids at finite temperature: Treatment of the thermal bath , 2007 .
[36] M. Manhart,et al. Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.
[37] Clarence W. Rowley,et al. Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.
[38] M. Smoluchowski. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .
[39] A J Chorin,et al. Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[40] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .
[41] Paul Van Dooren,et al. A collection of benchmark examples for model reduction of linear time invariant dynamical systems. , 2002 .
[42] A. Merzon,et al. Scattering in the nonlinear Lamb system , 2009 .