Image-based Visual Servoing of a Gough—Stewart Parallel Manipulator using Leg Observations

In this paper, a tight coupling between computer vision and parallel robotics is exhibited through the projective line geometry. Indeed, contrary to the usual methodology where the robot is modeled independently from the control law that will be implemented, the proposed method takes into account, from the early modeling stage, the fact that vision will be used for control. Hence, kinematic modeling and projective geometry are fused into a control-devoted projective kinematic model. Thus, starting from a vision-based kinematic modeling of a Gough—Stewart manipulator, a visual servoing scheme is presented, where the image projection (edges) of the non-rigidly linked legs are servoed, rather than the end-effector pose or the leg directions.

[1]  Philippe Martinet,et al.  On Vision-based Kinematic Calibration of a Stewart-Gough Platform , 2004 .

[2]  Philippe Martinet,et al.  Visually servoing a gough-stewart parallel robot allows for reduced and linear kinematic calibration , 2005, ICINCO.

[3]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[4]  Philippe Martinet,et al.  Combining end-effector and legs observation for kinematic calibration of parallel mechanisms , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[5]  Chien Chern Cheah,et al.  A Motion Control Scheme in Task Oriented Coordinates and its Robustness for Parallel Wire Driven Systems , 2000 .

[6]  Radu Horaud,et al.  Visual Servoing from Lines , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[7]  Philippe Martinet,et al.  Vision-Based Control of a Gough-Stewart Parallel Mechanism using Legs Observation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[8]  Han Sung Kim,et al.  Evaluation of a Cartesian Parallel Manipulator , 2002 .

[9]  P. Dietmaier,et al.  The Stewart-Gough Platform of General Geometry can have 40 Real Postures , 1998 .

[10]  Philippe Martinet,et al.  Vision-based kinematic calibration of an H4 parallel mechanism: practical accuracies , 2004, Ind. Robot.

[11]  Quan Zhou,et al.  Three-dimensional position control of a parallel micromanipulator using visual servoing , 2000, SPIE Optics East.

[12]  Robert E. Mahony,et al.  Image-based visual servo control of aerial robotic systems using linear image features , 2005, IEEE Transactions on Robotics.

[13]  F. Chaumette,et al.  ViSP : A generic software platform for visual servoing , 2022 .

[14]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[15]  Jorge Angeles,et al.  The direct kinematics of parallel manipulators under joint-sensor redundancy , 2000, IEEE Trans. Robotics Autom..

[16]  Philippe Martinet,et al.  Visual servoing of a Gough-Stewart parallel robot without proprioceptive sensors , 2005, Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05..

[17]  Philippe Martinet,et al.  Kinematic calibration of parallel mechanisms: a novel approach using legs observation , 2005, IEEE Transactions on Robotics.

[18]  Grigore Gogu Fully-Isotropic T3R1-Type Parallel Manipulators , 2004 .

[19]  Xinhua Zhao,et al.  Direct displacement analysis of parallel manipulators , 2000, J. Field Robotics.

[20]  Michel Dhome,et al.  Do We Really Need an Accurate Calibration Pattern to Achieve a Reliable Camera Calibration? , 1998, ECCV.

[21]  T. Mruthyunjaya,et al.  Force redundancy in parallel manipulators: Theoretical and practical issues , 1998 .

[22]  Philippe Martinet,et al.  Vision Based Control Law using 3D Visual Features , 1997 .

[23]  Éric Marchand,et al.  ViSP for visual servoing: a generic software platform with a wide class of robot control skills , 2005, IEEE Robotics & Automation Magazine.

[24]  Robert E. Mahony,et al.  Visual servoing using linear features for under-actuated rigid body dynamics , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[25]  Philippe Martinet,et al.  Unifying Kinematic Modeling, Identification, and Control of a Gough–Stewart Parallel Robot Into a Vision-Based Framework , 2006, IEEE Transactions on Robotics.

[26]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[27]  H. Pottmann,et al.  Approximation in Line Space — Applications in Robot Kinematics and Surface Reconstruction , 1998 .

[28]  D. Stewart,et al.  A Platform with Six Degrees of Freedom , 1965 .

[29]  J. Plucker I. On a new geometry of space , Proceedings of the Royal Society of London.

[30]  Jian Wang,et al.  On the accuracy of a Stewart platform. I. The effect of manufacturing tolerances , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[31]  Larry S. Davis,et al.  Model-based object pose in 25 lines of code , 1992, International Journal of Computer Vision.

[32]  Fadi Dornaika,et al.  Visually guided object grasping , 1998, IEEE Trans. Robotics Autom..

[33]  M. Husty An algorithm for solving the direct kinematics of general Stewart-Gough platforms , 1996 .

[34]  J. G. Semple,et al.  Algebraic Projective Geometry , 1953 .