Are We There Yet? A Review on Existing Perceptual Theory and Experiment Support for Visualization Recommendation Systems

A growing body of research focuses on helping users explore complex datasets faster by automatically suggesting visualization designs of possible interest. However, existing visualization recommendation systems only enumerate, rank, and recommend a small group of visualization designs. Our goal is to understand whether there is enough theoretical and experimental knowledge in current literature to inform visualization recommendation systems to assess the entire visualization design space. Thus, in this paper, we present a literature review comparing and ranking the quality of visualization designs in visual perception and human performance. We structure our review by first defining the visualization design space where visualizations must be compared to recommend effective visualization designs. We then perform the review by using a comprehensive schema to record the theoretical and experimental results of visualization comparison, which can also be used to guide the future construction of visualization recommendation systems. To analyze the literature coverage, we develop an interactive tool that can help explore current literature coverage of visualization comparison and identify gaps efficiently and effectively. Based on our findings, we highlight new opportunities and challenges for the community in working towards a comprehensive visualization ranking for informing visualization recommendation systems.

[1]  Stephen G. Kobourov,et al.  Evaluating Cartogram Effectiveness , 2015, IEEE Transactions on Visualization and Computer Graphics.

[2]  Lifeng Zhu,et al.  Line Graph or Scatter Plot? Automatic Selection of Methods for Visualizing Trends in Time Series , 2018, IEEE Transactions on Visualization and Computer Graphics.

[3]  Michael S. Bernstein,et al.  Learning Perceptual Kernels for Visualization Design , 2014, IEEE Transactions on Visualization and Computer Graphics.

[4]  Dale S. Klopfer,et al.  The perception of scatterplots , 2007, Perception & psychophysics.

[5]  Steven Franconeri,et al.  The Perceptual Proxies of Visual Comparison , 2019, IEEE Transactions on Visualization and Computer Graphics.

[6]  Niklas Elmqvist,et al.  Ranked-List Visualization: A Graphical Perception Study , 2019, CHI.

[7]  Guodao Sun,et al.  A survey on automatic infographics and visualization recommendations , 2020, Vis. Informatics.

[8]  Robert Kosara,et al.  The Shaping of Information by Visual Metaphors , 2008, IEEE Transactions on Visualization and Computer Graphics.

[9]  Oliver Deussen,et al.  Improving the Robustness of Scagnostics , 2020, IEEE Transactions on Visualization and Computer Graphics.

[10]  Steven Franconeri,et al.  Comparing averages in time series data , 2012, CHI.

[11]  Christopher G. Healey,et al.  Choosing effective colours for data visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[12]  Lane Harrison,et al.  An Evaluation of the Impact of Visual Embellishments in Bar Charts , 2015, Comput. Graph. Forum.

[13]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[14]  Jinwook Seo,et al.  Disentangled Representation of Data Distributions in Scatterplots , 2019, 2019 IEEE Visualization Conference (VIS).

[15]  Jeffrey Heer,et al.  Beyond Weber's Law: A Second Look at Ranking Visualizations of Correlation , 2016, IEEE Transactions on Visualization and Computer Graphics.

[16]  Danielle Albers Szafir,et al.  Measuring the Separability of Shape, Size, and Color in Scatterplots , 2019, CHI.

[17]  Niklas Elmqvist,et al.  When David Meets Goliath: Combining Smartwatches with a Large Vertical Display for Visual Data Exploration , 2018, CHI.

[18]  David H. Laidlaw,et al.  The relation between visualization size, grouping, and user performance , 2014, IEEE Transactions on Visualization and Computer Graphics.

[19]  R. Kosara,et al.  Evidence for Area as the Primary Visual Cue in Pie Charts , 2019, 2019 IEEE Visualization Conference (VIS).

[20]  Michael E. Papka,et al.  Evaluating Gradient Perception in Color-Coded Scalar Fields , 2019, 2019 IEEE Visualization Conference (VIS).

[21]  Wei Chen,et al.  ScatterNet: A Deep Subjective Similarity Model for Visual Analysis of Scatterplots , 2020, IEEE Transactions on Visualization and Computer Graphics.

[22]  Min Chen,et al.  A Multi‐task Comparative Study on Scatter Plots and Parallel Coordinates Plots , 2015, Comput. Graph. Forum.

[23]  Robert Kosara,et al.  Readability and Precision in Pictorial Bar Charts , 2017, EuroVis.

[24]  James P. Ahrens,et al.  Ordering Perceptions about Perceptual Order , 2018, 2018 IEEE Scientific Visualization Conference (SciVis).

[25]  Weiwei Cui,et al.  Visualization Assessment: A Machine Learning Approach , 2019, 2019 IEEE Visualization Conference (VIS).

[26]  Melanie Tory,et al.  Visualization task performance with 2D, 3D, and combination displays , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  Guoliang Li,et al.  DeepEye: Towards Automatic Data Visualization , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[28]  Leilani Battle,et al.  An Evaluation-Focused Framework for Visualization Recommendation Algorithms , 2021, IEEE Transactions on Visualization and Computer Graphics.

[29]  Charles Perin,et al.  Assessing the Graphical Perception of Time and Speed on 2D+Time Trajectories , 2018, IEEE Transactions on Visualization and Computer Graphics.

[30]  Niklas Elmqvist,et al.  Supporting visual exploration for multiple users in large display environments , 2016, 2016 IEEE Conference on Visual Analytics Science and Technology (VAST).

[31]  Steven Franconeri,et al.  Perception of Average Value in Multiclass Scatterplots , 2013, IEEE Transactions on Visualization and Computer Graphics.

[32]  Arvind Satyanarayan,et al.  Vega-Lite: A Grammar of Interactive Graphics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[33]  Robert Gaschler,et al.  Perception of bar graphs - A biased impression? , 2016, Comput. Hum. Behav..

[34]  Alex Endert,et al.  Task-Based Effectiveness of Basic Visualizations , 2017, IEEE Transactions on Visualization and Computer Graphics.

[35]  R. Strahan,et al.  Underestimating Correlation from Scatterplots , 1978 .

[36]  Steven Franconeri,et al.  Ranking Visualizations of Correlation Using Weber's Law , 2014, IEEE Transactions on Visualization and Computer Graphics.

[37]  Min Chen,et al.  An Information-theoretic Framework for Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[38]  Kanit Wongsuphasawat,et al.  Towards a general-purpose query language for visualization recommendation , 2016, HILDA '16.

[39]  Kanit Wongsuphasawat,et al.  Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations , 2016, IEEE Transactions on Visualization and Computer Graphics.

[40]  Jeffrey Heer,et al.  Selecting Semantically‐Resonant Colors for Data Visualization , 2013, Comput. Graph. Forum.

[41]  Younghoon Kim,et al.  Assessing Effects of Task and Data Distribution on the Effectiveness of Visual Encodings , 2018, Comput. Graph. Forum.

[42]  Steven Franconeri,et al.  Face to Face: Evaluating Visual Comparison , 2019, IEEE Transactions on Visualization and Computer Graphics.

[43]  James P. Ahrens,et al.  The Good, the Bad, and the Ugly: A Theoretical Framework for the Assessment of Continuous Colormaps , 2018, IEEE Transactions on Visualization and Computer Graphics.

[44]  Danielle Albers Szafir,et al.  Modeling Color Difference for Visualization Design , 2018, IEEE Transactions on Visualization and Computer Graphics.

[45]  Anastasia Bezerianos,et al.  Comparing Similarity Perception in Time Series Visualizations , 2019, IEEE Transactions on Visualization and Computer Graphics.

[46]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[47]  Tim Kraska,et al.  VizML: A Machine Learning Approach to Visualization Recommendation , 2018, CHI.

[48]  Joachim Meyer,et al.  Estimating Correlations from Scatterplots , 1992 .

[49]  Jeffrey Heer,et al.  Perceptual Guidelines for Creating Rectangular Treemaps , 2010, IEEE Transactions on Visualization and Computer Graphics.

[50]  Kanit Wongsuphasawat,et al.  Voyager 2: Augmenting Visual Analysis with Partial View Specifications , 2017, CHI.

[51]  Pat Hanrahan,et al.  Show Me: Automatic Presentation for Visual Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[52]  Steven Franconeri,et al.  ISOTYPE Visualization: Working Memory, Performance, and Engagement with Pictographs , 2015, CHI.

[53]  Irene Reppa,et al.  An Empirical Study on Using Visual Embellishments in Visualization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[54]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[55]  R. Grossman,et al.  Graph-theoretic scagnostics , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[56]  Jeffrey Heer,et al.  Crowdsourcing graphical perception: using mechanical turk to assess visualization design , 2010, CHI.

[57]  Michael Gleicher,et al.  Task-driven evaluation of aggregation in time series visualization , 2014, CHI.

[58]  Michael Gleicher,et al.  Scatterplots: Tasks, Data, and Designs , 2018, IEEE Transactions on Visualization and Computer Graphics.

[59]  Jing Li,et al.  Judging Correlation from Scatterplots and Parallel Coordinate Plots , 2010, Inf. Vis..

[60]  John T. Stasko,et al.  Value-driven evaluation of visualizations , 2014, BELIV.

[61]  Hadley Wickham,et al.  A Layered Grammar of Graphics , 2010 .

[62]  Silvia Miksch,et al.  Bertin was Right: An Empirical Evaluation of Indexing to Compare Multivariate Time‐Series Data Using Line Plots , 2011, Comput. Graph. Forum.

[63]  Steven Franconeri,et al.  Four types of ensemble coding in data visualizations. , 2016, Journal of vision.

[64]  Michaël Aupetit,et al.  Data‐driven Evaluation of Visual Quality Measures , 2015, Comput. Graph. Forum.

[65]  Jeffrey Heer,et al.  Regression by Eye: Estimating Trends in Bivariate Visualizations , 2017, CHI.

[66]  Min Chen,et al.  Categorical Colormap Optimization with Visualization Case Studies , 2017, IEEE Transactions on Visualization and Computer Graphics.

[67]  Hanspeter Pfister,et al.  Evaluating ‘Graphical Perception’ with CNNs , 2018, IEEE Transactions on Visualization and Computer Graphics.

[68]  Peter J. Haas,et al.  Foresight: Recommending Visual Insights , 2017, Proc. VLDB Endow..

[69]  Karen B. Schloss,et al.  Mapping Color to Meaning in Colormap Data Visualizations , 2019, IEEE Transactions on Visualization and Computer Graphics.

[70]  Antti Oulasvirta,et al.  Towards Perceptual Optimization of the Visual Design of Scatterplots , 2017, IEEE Transactions on Visualization and Computer Graphics.

[71]  Sara L. Su,et al.  Understanding Visualization by Understanding Individual Users , 2012, IEEE Computer Graphics and Applications.

[72]  Jeffrey Heer,et al.  Formalizing Visualization Design Knowledge as Constraints: Actionable and Extensible Models in Draco , 2018, IEEE Transactions on Visualization and Computer Graphics.

[73]  Min Chen,et al.  What May Visualization Processes Optimize? , 2015, IEEE Transactions on Visualization and Computer Graphics.

[74]  Joachim Meyer,et al.  Correlation estimates as perceptual judgments. , 1997 .

[75]  Aditya G. Parameswaran,et al.  SeeDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics , 2015, Proc. VLDB Endow..

[76]  Chi-Wing Fu,et al.  Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots , 2019, IEEE Transactions on Visualization and Computer Graphics.

[77]  Stephen Redmond,et al.  Visual Cues in Estimation of Part-To-Whole Comparisons , 2019, 2019 IEEE Visualization Conference (VIS).

[78]  Kalpathi R. Subramanian,et al.  Open vs. Closed Shapes: New Perceptual Categories? , 2018, IEEE Transactions on Visualization and Computer Graphics.

[79]  Huamin Qu,et al.  Neighborhood Perception in Bar Charts , 2019, CHI.

[80]  Mostafa M. Abbas,et al.  ClustMe: A Visual Quality Measure for Ranking Monochrome Scatterplots based on Cluster Patterns , 2019, Comput. Graph. Forum.

[81]  Jarke J. van Wijk,et al.  Cluster and Calendar Based Visualization of Time Series Data , 1999, INFOVIS.

[82]  Min Chen,et al.  How Ordered Is It? On the Perceptual Orderability of Visual Channels , 2016, Comput. Graph. Forum.

[83]  Vidya Setlur,et al.  Four Experiments on the Perception of Bar Charts , 2014, IEEE Transactions on Visualization and Computer Graphics.

[84]  Khairi Reda,et al.  Graphical Perception of Continuous Quantitative Maps: the Effects of Spatial Frequency and Colormap Design , 2018, CHI.

[85]  Steven Franconeri,et al.  Truncating the Y-Axis: Threat or Menace? , 2019, CHI.

[86]  Bongshin Lee,et al.  Visualizing Ranges over Time on Mobile Phones: A Task-Based Crowdsourced Evaluation , 2019, IEEE Transactions on Visualization and Computer Graphics.

[87]  Ronald A. Rensink,et al.  Correlation Judgment and Visualization Features: A Comparative Study , 2019, IEEE Transactions on Visualization and Computer Graphics.

[88]  Yang Liu,et al.  Somewhere Over the Rainbow: An Empirical Assessment of Quantitative Colormaps , 2018, CHI.

[89]  Steven Franconeri,et al.  Revealing Perceptual Proxies with Adversarial Examples , 2020, IEEE Transactions on Visualization and Computer Graphics.

[90]  Daniel Perry,et al.  VizDeck: self-organizing dashboards for visual analytics , 2012, SIGMOD Conference.

[91]  Enrico Bertini,et al.  Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[92]  Eugene Wu,et al.  At a Glance: Pixel Approximate Entropy as a Measure of Line Chart Complexity , 2018, IEEE Transactions on Visualization and Computer Graphics.

[93]  James R. Eagan,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[94]  Wei Xu,et al.  A Data-Driven Approach for Mapping Multivariate Data to Color , 2016, ArXiv.

[95]  Alexandru Telea,et al.  Skeleton-Based Scagnostics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[96]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[97]  Jeffrey Heer,et al.  Animated Transitions in Statistical Data Graphics , 2007, IEEE Transactions on Visualization and Computer Graphics.

[98]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[99]  Bongshin Lee,et al.  What's the Difference?: Evaluating Variations of Multi-Series Bar Charts for Visual Comparison Tasks , 2018, CHI.

[100]  Robert Kosara,et al.  Pargnostics: Screen-Space Metrics for Parallel Coordinates , 2010, IEEE Transactions on Visualization and Computer Graphics.

[101]  Steven Franconeri,et al.  Biased Average Position Estimates in Line and Bar Graphs: Underestimation, Overestimation, and Perceptual Pull , 2019, IEEE Transactions on Visualization and Computer Graphics.

[102]  Robert Kosara,et al.  The Impact of Distribution and Chart Type on Part-to-Whole Comparisons , 2019, EuroVis.

[103]  Anshul Vikram Pandey,et al.  Towards Understanding Human Similarity Perception in the Analysis of Large Sets of Scatter Plots , 2016, CHI.

[104]  Denis Gracanin,et al.  A Comparison of Radial and Linear Charts for Visualizing Daily Patterns , 2019, IEEE Transactions on Visualization and Computer Graphics.

[105]  Younghoon Kim,et al.  GraphScape: A Model for Automated Reasoning about Visualization Similarity and Sequencing , 2017, CHI.

[106]  Ronald A. Rensink,et al.  The Perception of Correlation in Scatterplots , 2010, Comput. Graph. Forum.

[107]  Ilaria Liccardi,et al.  An Empirical Study on the Reliability of Perceiving Correlation Indices using Scatterplots , 2017, Comput. Graph. Forum.