Trajectory-Based Surveillance Analysis: A Survey

Due to the advancement of camera hardware and machine learning techniques, video object tracking for surveillance has received noticeable attention from the computer vision research community. Object tracking and trajectory modeling have important applications in surveillance video analysis. For example, trajectory clustering, summarization or synopsis generation, and detection of anomalous or abnormal events in videos are mainly being exploited by the research community. However, barring one research work (which is almost a decade old), there is no recent review that emphasizes the use of video object trajectories, particularly in the perspective of visual surveillance. This paper presents a survey of trajectory-based surveillance applications with a focus on clustering, anomaly detection, summarization, and synopsis generation. The methods reviewed in this paper broadly summarize the abovementioned applications. The main purpose of this survey is to summarize the state-of-the-art video object trajectory analysis techniques used in the indoor and outdoor surveillance.

[1]  Vania Bogorny,et al.  Toward Abnormal Trajectory and Event Detection in Video Surveillance , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[2]  Li Sun,et al.  Event-based large scale surveillance video summarization , 2016, Neurocomputing.

[3]  Tao Mei,et al.  A Diffusion and Clustering-Based Approach for Finding Coherent Motions and Understanding Crowd Scenes , 2016, IEEE Transactions on Image Processing.

[4]  Francesco G. B. De Natale,et al.  Object Trajectory Analysis in Video Indexing and Retrieval Applications , 2010, Video Search and Mining.

[5]  Tao Xiang,et al.  Identifying Rare and Subtle Behaviors: A Weakly Supervised Joint Topic Model , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  W. Eric L. Grimson,et al.  Trajectory analysis and semantic region modeling using a nonparametric Bayesian model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Jiang Yu Zheng,et al.  Temporal mapping of surveillance video for indexing and summarization , 2016, Comput. Vis. Image Underst..

[8]  Mohan M. Trivedi,et al.  3-D Posture and Gesture Recognition for Interactivity in Smart Spaces , 2012, IEEE Transactions on Industrial Informatics.

[9]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Md. Golam Rashed,et al.  Supporting Human–Robot Interaction Based on the Level of Visual Focus of Attention , 2015, IEEE Transactions on Human-Machine Systems.

[11]  Shing-Chow Chan,et al.  A New Robust Kalman Filter-Based Subspace Tracking Algorithm in an Impulsive Noise Environment , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[12]  Mohan M. Trivedi,et al.  Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis , 2013, IEEE Transactions on Intelligent Transportation Systems.

[13]  Bingbing Ni,et al.  Recognizing pair-activities by causality analysis , 2011, TIST.

[14]  Yingfeng Cai,et al.  Trajectory-based anomalous behaviour detection for intelligent traffic surveillance , 2015 .

[15]  Andrea Cavallaro,et al.  Multifeature Object Trajectory Clustering for Video Analysis , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  Jean-Michel Loubes,et al.  Review and Perspective for Distance-Based Clustering of Vehicle Trajectories , 2016, IEEE Transactions on Intelligent Transportation Systems.

[17]  Pourang Irani,et al.  Interactive Exploration of Surveillance Video through Action Shot Summarization and Trajectory Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[18]  Xuelong Li,et al.  Surveillance Video Synopsis via Scaling Down Objects , 2016, IEEE Transactions on Image Processing.

[19]  Jorge S. Marques,et al.  Modeling and Classifying Human Activities From Trajectories Using a Class of Space-Varying Parametric Motion Fields , 2013, IEEE Transactions on Image Processing.

[20]  Ian D. Reid,et al.  Stable multi-target tracking in real-time surveillance video , 2011, CVPR 2011.

[21]  Rongrong Ji,et al.  Exploring Coherent Motion Patterns via Structured Trajectory Learning for Crowd Mood Modeling , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[22]  Ekta Vats,et al.  Fuzzy human motion analysis: A review , 2014, Pattern Recognit..

[23]  Jenq-Neng Hwang,et al.  Integrated video object tracking with applications in trajectory-based event detection , 2011, J. Vis. Commun. Image Represent..

[24]  Thomas Serre,et al.  HMDB: A large video database for human motion recognition , 2011, 2011 International Conference on Computer Vision.

[25]  Jie Zhao,et al.  A review of moving object trajectory clustering algorithms , 2016, Artificial Intelligence Review.

[26]  Jorge S. Marques,et al.  Automatic Estimation of Multiple Motion Fields From Video Sequences Using a Region Matching Based Approach , 2014, IEEE Transactions on Multimedia.

[27]  Ali Wali,et al.  Trajectory analysis for parking lot vacancy detection system , 2016 .

[28]  Yongwei Nie,et al.  Compact Video Synopsis via Global Spatiotemporal Optimization , 2013, IEEE Trans. Vis. Comput. Graph..

[29]  H. Gunes,et al.  Multimodal Human-Human-Robot Interactions (MHHRI) Dataset for Studying Personality and Engagement , 2019, IEEE Transactions on Affective Computing.

[30]  Robert T. Collins,et al.  Vision-Based Analysis of Small Groups in Pedestrian Crowds , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Fatih Murat Porikli,et al.  CDnet 2014: An Expanded Change Detection Benchmark Dataset , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[32]  Xi Chen,et al.  Activity Analysis, Summarization, and Visualization for Indoor Human Activity Monitoring , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[33]  Yael Pritch,et al.  Clustered Synopsis of Surveillance Video , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[34]  Dan Schonfeld,et al.  Object Trajectory-Based Activity Classification and Recognition Using Hidden Markov Models , 2007, IEEE Transactions on Image Processing.

[35]  Robert B. Fisher,et al.  The BEHAVE video dataset: ground truthed video for multi-person behavior classification , 2010 .

[36]  Mubarak Shah,et al.  UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild , 2012, ArXiv.

[37]  Rita Cucchiara,et al.  Video Surveillance Online Repository (ViSOR): an integrated framework , 2010, Multimedia Tools and Applications.

[38]  José María Martínez Sanchez,et al.  A semantic-based probabilistic approach for real-time video event recognition , 2012, Comput. Vis. Image Underst..

[39]  Andrea Cavallaro,et al.  Resource Allocation for Personalized Video Summarization , 2014, IEEE Transactions on Multimedia.

[40]  Guoliang Lu,et al.  Unsupervised, efficient and scalable key-frame selection for automatic summarization of surveillance videos , 2017, Multimedia Tools and Applications.

[41]  Rui-min Hu,et al.  Surveillance video synopsis in the compressed domain for fast video browsing , 2013, J. Vis. Commun. Image Represent..

[42]  H. Zha,et al.  A fully online and unsupervised system for large and high-density area surveillance: Tracking, semantic scene learning and abnormality detection , 2013, TIST.

[43]  Peter H. N. de With,et al.  Automatic video-based human motion analyzer for consumer surveillance system , 2009, IEEE Transactions on Consumer Electronics.

[44]  A. Ellis,et al.  PETS2009 and Winter-PETS 2009 results: A combined evaluation , 2009, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[45]  Andrew Zisserman,et al.  Two-Stream Convolutional Networks for Action Recognition in Videos , 2014, NIPS.

[46]  Nebojsa Jojic,et al.  Interactive Montages of Sprites for Indexing and Summarizing Security Video , 2005, CVPR.

[47]  J. Ferryman,et al.  PETS2009: Dataset and challenge , 2009, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[48]  Alessia Saggese,et al.  Designing Huge Repositories of Moving Vehicles Trajectories for Efficient Extraction of Semantic Data , 2015, IEEE Transactions on Intelligent Transportation Systems.

[49]  Xiaogang Wang,et al.  Understanding collective crowd behaviors: Learning a Mixture model of Dynamic pedestrian-Agents , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Janusz Konrad,et al.  Video Condensation by Ribbon Carving , 2009, IEEE Transactions on Image Processing.

[52]  P. J. Narayanan,et al.  Interactive Video Manipulation Using Object Trajectories and Scene Backgrounds , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[53]  Irfan A. Essa,et al.  Gaussian process regression flow for analysis of motion trajectories , 2011, 2011 International Conference on Computer Vision.

[54]  David A. Clausi,et al.  Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance , 2011, Image Vis. Comput..

[55]  Jianxin Wu,et al.  A New Network-Based Algorithm for Human Activity Recognition in Videos , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[56]  Anupam Agrawal,et al.  A survey on activity recognition and behavior understanding in video surveillance , 2012, The Visual Computer.

[57]  Seung-Won Jung,et al.  Order-Preserving Condensation of Moving Objects in Surveillance Videos , 2016, IEEE Transactions on Intelligent Transportation Systems.

[58]  Jouko Lampinen,et al.  Rao-Blackwellized particle filter for multiple target tracking , 2007, Inf. Fusion.

[59]  Alessia Saggese,et al.  A hierarchical neuro-fuzzy architecture for human behavior analysis , 2015, Inf. Sci..

[60]  Pawel Forczmanski,et al.  Automatic Analysis of Vehicle Trajectory Applied to Visual Surveillance , 2015, IP&C.

[61]  Miguel Á. Carreira-Perpiñán,et al.  Manifold blurring mean shift algorithms for manifold denoising , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[62]  Tarek Sayed,et al.  A framework for automated road-users classification using movement trajectories , 2013 .

[63]  Aggelos K. Katsaggelos,et al.  Anomalous video event detection using spatiotemporal context , 2011 .

[64]  Xu Chen,et al.  Motion Trajectory-Based Video Retrieval, Classification, and Summarization , 2010, Video Search and Mining.

[65]  Peihua Li An Adaptive Binning Color Model for Mean Shift Tracking , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[66]  Gian Luca Foresti,et al.  Trajectory-Based Anomalous Event Detection , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[67]  Yue Wang,et al.  Motion-State-Adaptive Video Summarization via Spatiotemporal Analysis , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[68]  Zhongfei Zhang,et al.  An Incremental DPMM-Based Method for Trajectory Clustering, Modeling, and Retrieval , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Giovanni Maria Farinella,et al.  Organizing egocentric videos of daily living activities , 2017, Pattern Recognit..

[70]  Shaogang Gong,et al.  Video Behaviour Mining Using a Dynamic Topic Model , 2011, International Journal of Computer Vision.

[71]  Aggelos K. Katsaggelos,et al.  A Dynamic Hierarchical Clustering Method for Trajectory-Based Unusual Video Event Detection , 2009, IEEE Transactions on Image Processing.

[72]  벨렉 쉬무엘,et al.  Method and System for Video Indexing and Video Synopsis , 2007 .

[73]  Chun-Rong Huang,et al.  Maximum a Posteriori Probability Estimation for Online Surveillance Video Synopsis , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[74]  Shiliang Sun,et al.  Modeling and recognizing human trajectories with beta process hidden Markov models , 2015, Pattern Recognit..

[75]  Gunther Heidemann,et al.  Interactive Schematic Summaries for Faceted Exploration of Surveillance Video , 2013, IEEE Transactions on Multimedia.

[76]  Mohan M. Trivedi,et al.  Trajectory Learning for Activity Understanding: Unsupervised, Multilevel, and Long-Term Adaptive Approach , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[77]  Huiyu Zhou,et al.  Object tracking using SIFT features and mean shift , 2009, Comput. Vis. Image Underst..

[78]  Shengcai Liao,et al.  High-Performance Video Condensation System , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[79]  Martin Lauer,et al.  UA-DETRAC 2017: Report of AVSS2017 & IWT4S Challenge on Advanced Traffic Monitoring , 2017, 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[80]  Debi Prosad Dogra,et al.  Localization of region of interest in surveillance scene , 2016, Multimedia Tools and Applications.

[81]  Qi Wang,et al.  Online Anomaly Detection in Crowd Scenes via Structure Analysis , 2015, IEEE Transactions on Cybernetics.

[82]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[83]  Amit K. Roy-Chowdhury,et al.  Context-Aware Surveillance Video Summarization , 2016, IEEE Transactions on Image Processing.

[84]  Rita Cucchiara,et al.  Video surveillance online repository (ViSOR): www.openvisor.org , 2013, MMSys.

[85]  Anupam Agrawal,et al.  Vision based hand gesture recognition for human computer interaction: a survey , 2012, Artificial Intelligence Review.

[86]  W. Eric L. Grimson,et al.  Correspondence-Free Activity Analysis and Scene Modeling in Multiple Camera Views , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[87]  Nico Van de Weghe,et al.  Implementing a qualitative calculus to analyse moving point objects , 2011, Expert Syst. Appl..

[88]  Carlo S. Regazzoni,et al.  Online Nonparametric Bayesian Activity Mining and Analysis From Surveillance Video , 2016, IEEE Transactions on Image Processing.

[89]  Henri Nicolas,et al.  Video traffic analysis using scene and vehicle models , 2014, Signal Process. Image Commun..

[90]  Amjad Rehman,et al.  Features extraction for soccer video semantic analysis: current achievements and remaining issues , 2012, Artificial Intelligence Review.

[91]  Shaogang Gong,et al.  Person Re-Identification by Discriminative Selection in Video Ranking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[92]  Yael Pritch,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008 1 Non-Chronological Video , 2022 .

[93]  F. Xavier Roca,et al.  Toward Real-Time Pedestrian Detection Based on a Deformable Template Model , 2014, IEEE Transactions on Intelligent Transportation Systems.

[94]  Patrick Bouthemy,et al.  A Statistical Video Content Recognition Method Using Invariant Features on Object Trajectories , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[95]  Sergio A. Velastin,et al.  A Review of Computer Vision Techniques for the Analysis of Urban Traffic , 2011, IEEE Transactions on Intelligent Transportation Systems.

[96]  Gang Wang,et al.  Video tracking using learned hierarchical features. , 2015, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[97]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[98]  Kaiqi Huang,et al.  An Extended Grammar System for Learning and Recognizing Complex Visual Events , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[99]  Dalton Meitei Thounaojam,et al.  A SURVEY ON MOVING OBJECT TRACKING IN VIDEO , 2014 .

[100]  Roland Göcke,et al.  Ordered trajectories for human action recognition with large number of classes , 2015, Image Vis. Comput..

[101]  Silvio Savarese,et al.  Understanding Collective Activitiesof People from Videos , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[102]  Jan-Michael Frahm,et al.  Feature tracking and matching in video using programmable graphics hardware , 2007, Machine Vision and Applications.

[103]  Mubarak Shah,et al.  Recognizing 50 human action categories of web videos , 2012, Machine Vision and Applications.

[104]  Guillaume Dubuisson Duplessis,et al.  Multimodal data collection of human-robot humorous interactions in the Joker project , 2015, 2015 International Conference on Affective Computing and Intelligent Interaction (ACII).

[105]  Andrea Cavallaro,et al.  Adaptive Online Performance Evaluation of Video Trackers , 2012, IEEE Transactions on Image Processing.

[106]  Alessia Saggese,et al.  Dynamic Scene Understanding for Behavior Analysis Based on String Kernels , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[107]  Wenlong Zhang,et al.  Collision-free trajectory planning in human-robot interaction through hand movement prediction from vision , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).

[108]  Bineng Zhong,et al.  CNNTracker: Online discriminative object tracking via deep convolutional neural network , 2016, Appl. Soft Comput..

[109]  Liang Lin,et al.  Integrating Graph Partitioning and Matching for Trajectory Analysis in Video Surveillance , 2012, IEEE Transactions on Image Processing.

[110]  Jake K. Aggarwal,et al.  Robot-centric Activity Recognition from First-Person RGB-D Videos , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[111]  W. Eric L. Grimson,et al.  Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  Kejun Wang,et al.  Video-Based Abnormal Human Behavior Recognition—A Review , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[113]  Hanqing Lu,et al.  Online video synopsis of structured motion , 2014, Neurocomputing.

[114]  Shaohui Mei,et al.  Video summarization via minimum sparse reconstruction , 2015, Pattern Recognit..

[115]  Jake K. Aggarwal,et al.  Human activity recognition from 3D data: A review , 2014, Pattern Recognit. Lett..

[116]  Jianxin Wu,et al.  A Tube-and-Droplet-Based Approach for Representing and Analyzing Motion Trajectories , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  Shaogang Gong,et al.  Video Behavior Profiling for Anomaly Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[118]  Shaogang Gong,et al.  Discovery of Shared Semantic Spaces for Multiscene Video Query and Summarization , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[119]  W. Eric L. Grimson,et al.  Trajectory Analysis and Semantic Region Modeling Using Nonparametric Hierarchical Bayesian Models , 2011, International Journal of Computer Vision.

[120]  Paulo Cortez,et al.  Automatic visual detection of human behavior: A review from 2000 to 2014 , 2015, Expert Syst. Appl..

[121]  Daeho Lee,et al.  Vision-based remote control system by motion detection and open finger counting , 2009, IEEE Transactions on Consumer Electronics.

[122]  Shaogang Gong,et al.  Detecting and discriminating behavioural anomalies , 2011, Pattern Recognit..

[123]  Changsheng Xu,et al.  Mining Semantic Context Information for Intelligent Video Surveillance of Traffic Scenes , 2013, IEEE Transactions on Industrial Informatics.

[124]  Shehzad Khalid,et al.  Motion-based behaviour learning, profiling and classification in the presence of anomalies , 2010, Pattern Recognit..

[125]  Mohan M. Trivedi,et al.  A Survey of Vision-Based Trajectory Learning and Analysis for Surveillance , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[126]  Hanqi Zhuang,et al.  Real-time eye feature tracking from a video image sequence using Kalman filter , 1994, Conference Record Southcon.

[127]  Qixiang Ye,et al.  Visual abnormal behavior detection based on trajectory sparse reconstruction analysis , 2013, Neurocomputing.

[128]  Junzhou Huang,et al.  Robust Visual Tracking Using Local Sparse Appearance Model and K-Selection , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[129]  Deng Cai,et al.  Tracking people in RGBD videos using deep learning and motion clues , 2016, Neurocomputing.

[130]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[131]  Zhongke Shi,et al.  Toward Dynamic Scene Understanding by Hierarchical Motion Pattern Mining , 2014, IEEE Transactions on Intelligent Transportation Systems.

[132]  Jessica K. Hodgins,et al.  Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[133]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[134]  Pau-Choo Chung,et al.  Event based surveillance video synopsis using trajectory kinematics descriptors , 2017, 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA).

[135]  Hongyuan Zha,et al.  Unsupervised Trajectory Clustering via Adaptive Multi-kernel-Based Shrinkage , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[136]  Trevor Darrell,et al.  Sequence to Sequence -- Video to Text , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[137]  Mohan M. Trivedi,et al.  Learning trajectory patterns by clustering: Experimental studies and comparative evaluation , 2009, CVPR.

[138]  Qingshan Liu,et al.  Abnormal detection using interaction energy potentials , 2011, CVPR 2011.

[139]  Bingbing Ni,et al.  Crowded Scene Analysis: A Survey , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[140]  Jianxin Wu,et al.  A Heat-Map-Based Algorithm for Recognizing Group Activities in Videos , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[141]  Hongbin Zha,et al.  Learning to Detect Anomalies in Surveillance Video , 2015, IEEE Signal Processing Letters.

[142]  Jean-Marc Odobez,et al.  The vernissage corpus: A conversational Human-Robot-Interaction dataset , 2013, 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[143]  Lu Wang,et al.  Adaptive human motion analysis and prediction , 2011, Pattern Recognit..

[144]  Qingming Huang,et al.  Representing dense crowd patterns using bag of trajectory graphs , 2014 .

[145]  Simone Calderara,et al.  Detecting anomalies in people's trajectories using spectral graph analysis , 2011, Comput. Vis. Image Underst..

[146]  Luis Jiménez,et al.  Dynamic weighted aggregation for normality analysis in intelligent surveillance systems , 2014, Expert Syst. Appl..

[147]  Changxin Gao,et al.  Graph coloring based surveillance video synopsis , 2017, Neurocomputing.

[148]  Marimuthu Palaniswami,et al.  A visual-numeric approach to clustering and anomaly detection for trajectory data , 2017, The Visual Computer.

[149]  James M. Ferryman,et al.  Multiresolution semantic activity characterisation and abnormality discovery in videos , 2014, Appl. Soft Comput..

[150]  Larry S. Davis,et al.  AVSS 2011 demo session: A large-scale benchmark dataset for event recognition in surveillance video , 2011, AVSS.

[151]  Cordelia Schmid,et al.  Action Recognition with Improved Trajectories , 2013, 2013 IEEE International Conference on Computer Vision.

[152]  Dmitry B. Goldgof,et al.  Understanding Transit Scenes: A Survey on Human Behavior-Recognition Algorithms , 2010, IEEE Transactions on Intelligent Transportation Systems.

[153]  Francesco Solera,et al.  Performance Measures and a Data Set for Multi-target, Multi-camera Tracking , 2016, ECCV Workshops.

[154]  Göran Falkman,et al.  Online Learning and Sequential Anomaly Detection in Trajectories. , 2013, IEEE transactions on pattern analysis and machine intelligence.

[155]  Debi Prosad Dogra,et al.  Unsupervised classification of erroneous video object trajectories , 2018, Soft Comput..

[156]  Sridha Sridharan,et al.  An Efficient and Robust System for Multiperson Event Detection in Real-World Indoor Surveillance Scenes , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[157]  Anil K. Jain,et al.  A Network of Dynamic Probabilistic Models for Human Interaction Analysis , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[158]  Xiaoqing Ding,et al.  Person-based video summarization and retrieval by tracking and clustering temporal face sequences , 2013, Electronic Imaging.

[159]  Bashir Al-Diri,et al.  Pair-Activity Analysis From Video Using Qualitative Trajectory Calculus , 2018, IEEE Transactions on Circuits and Systems for Video Technology.