The manifold particle filter for state estimation on high-dimensional implicit manifolds

We estimate the state of a noisy robot arm and underactuated hand using an implicit Manifold Particle Filter (MPF) informed by contact sensors. As the robot touches the world, its state space collapses to a contact manifold that we represent implicitly using a signed distance field. This allows us to extend the MPF to higher (six or more) dimensional state spaces. Earlier work, which explicitly represents the contact manifold, was only capable of scaling to three dimensions. Through a series of experiments, we show that the implicit MPF converges faster and is more accurate than a conventional particle filter during periods of persistent contact. We present three methods of drawing samples from an implicit contact manifold, and compare them in experiments.

[1]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[2]  Edward J. Sondik,et al.  The Optimal Control of Partially Observable Markov Processes over a Finite Horizon , 1973, Oper. Res..

[3]  SimunoviÄ SimunoviÄ,et al.  An information approach to parts mating , 1979 .

[4]  John Kenneth Salisbury,et al.  Preliminary design of a whole-arm manipulation system (WAMS) , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[5]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[6]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[7]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[8]  Dinesh K. Pai,et al.  Interaction capture and synthesis , 2005, ACM Trans. Graph..

[9]  Paul Ciprian Patic,et al.  THE BARRETTHAND GRASPER - PROGRAMMABLY FLEXIBLE PART HANDLING AND ASSEMBLY , 2006 .

[10]  Leslie Pack Kaelbling,et al.  Grasping POMDPs , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[11]  Daniel D. Lee,et al.  Proprioceptive localilzatilon for a quadrupedal robot on known terrain , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[12]  Konrad Schindler,et al.  A Generalisation of the ICP Algorithm for Articulated Bodies , 2008, BMVC.

[13]  Siddhartha S. Srinivasa,et al.  CHOMP: Gradient optimization techniques for efficient motion planning , 2009, 2009 IEEE International Conference on Robotics and Automation.

[14]  Siddhartha S. Srinivasa,et al.  Proprioceptive Localization for Mobile Manipulators , 2010 .

[15]  Oussama Khatib,et al.  Global Localization of Objects via Touch , 2011, IEEE Transactions on Robotics.

[16]  Sehoon Ha,et al.  Human motion reconstruction from force sensors , 2011, SCA '11.

[17]  Dieter Fox,et al.  Manipulator and object tracking for in-hand 3D object modeling , 2011, Int. J. Robotics Res..

[18]  Daniel P. Huttenlocher,et al.  Distance Transforms of Sampled Functions , 2012, Theory Comput..

[19]  Jeffrey C. Trinkle,et al.  The application of particle filtering to grasping acquisition with visual occlusion and tactile sensing , 2012, 2012 IEEE International Conference on Robotics and Automation.

[20]  Ross A. Knepper,et al.  Herb 2.0: Lessons Learned From Developing a Mobile Manipulator for the Home , 2012, Proceedings of the IEEE.

[21]  Joel W. Burdick,et al.  The next best touch for model-based localization , 2013, 2013 IEEE International Conference on Robotics and Automation.

[22]  Siddhartha S. Srinivasa,et al.  Efficient touch based localization through submodularity , 2012, 2013 IEEE International Conference on Robotics and Automation.

[23]  H. Snoussi Particle Filtering on Riemannian Manifolds. Application to Covariance Matrices Tracking , 2013 .

[24]  Joel W. Burdick,et al.  Interactive non-prehensile manipulation for grasping via POMDPs , 2013, 2013 IEEE International Conference on Robotics and Automation.

[25]  J. Andrew Bagnell,et al.  Closed-loop Servoing using Real-time Markerless Arm Tracking , 2013 .

[26]  Siddhartha S. Srinivasa,et al.  Pose estimation for contact manipulation with manifold particle filters , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Byron Boots,et al.  Learning predictive models of a depth camera & manipulator from raw execution traces , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[28]  Alessandro Roncone,et al.  Automatic kinematic chain calibration using artificial skin: Self-touch in the iCub humanoid robot , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Karen Liu Dynamic Animation and Robotics Toolkit , 2014 .

[30]  Dieter Fox,et al.  DART: Dense Articulated Real-Time Tracking , 2014, Robotics: Science and Systems.

[31]  Siddhartha S. Srinivasa,et al.  Pre- and post-contact policy decomposition for planar contact manipulation under uncertainty , 2014, Int. J. Robotics Res..

[32]  Siddhartha S. Srinivasa,et al.  Pose estimation for planar contact manipulation with manifold particle filters , 2015, Int. J. Robotics Res..

[33]  Zoltan-Csaba Marton,et al.  Depth-based tracking with physical constraints for robot manipulation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Nancy S. Pollard,et al.  Quadratic Encoding for Hand Pose Reconstruction from Multi-Touch Input , 2015, Eurographics.

[35]  Dinesh Manocha,et al.  Efficient global penetration depth computation for articulated models , 2016, Comput. Aided Des..

[36]  Seth J. Teller,et al.  Articulated pose estimation using tangent space approximations , 2016, Int. J. Robotics Res..

[37]  Siddhartha S. Srinivasa,et al.  Pre- and post-contact policy decomposition for planar contact manipulation under uncertainty , 2014, Int. J. Robotics Res..

[38]  J. Trinkle,et al.  A Dynamic Bayesian Approach to Simultaneous Estimation and Filtering in Grasp Acquisition , .