Feedback connections and operation of the outer plexiform layer of the retina

The primary feedback control apparatus in the outer retina is the sign-inverting feedback synapse between horizontal cells and cones. In many lower vertebrates horizontal cells release GABA in darkness, which opens Cl- channels in cones. Input-output relations of the feedback synapse reveal that the synaptic gain is light-dependent with the highest negative gain near the dark horizontal cell potential. The horizontal cell-cone feedback synapse improves the reliability of the photoreceptor output synapses. It also modulates the dynamic range and mediates color opponency and surround responses in second-order retinal neurons.

[1]  M. Piccolino,et al.  Sustained feedback effects of L-horizontal cells on turtle cones , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[3]  T. Tomita Electrophysiological study of the mechanisms subserving color coding in the fish retina. , 1965, Cold Spring Harbor symposia on quantitative biology.

[4]  A Kaneko,et al.  gamma-Aminobutyric acid acts at axon terminals of turtle photoreceptors: difference in sensitivity among cell types. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Wu Effects of gamma-aminobutyric acid on cones and bipolar cells of the tiger salamander retina , 1986, Brain Research.

[6]  W. Stell,et al.  GABA‐ergic pathways in the goldfish retina , 1978, The Journal of comparative neurology.

[7]  F S Werblin,et al.  Lateral Interactions at Inner Plexiform Layer of Vertebrate Retina: Antagonistic Responses to Change , 1972, Science.

[8]  A. Kaneko Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina , 1970, The Journal of physiology.

[9]  S. Watanabe,et al.  GABA-mediated negative feedback from horizontal cells to cones in carp retina. , 1982, The Japanese journal of physiology.

[10]  A Lasansky,et al.  Synaptic action mediating cone responses to annular illumination in the retina of the larval tiger salamander. , 1981, The Journal of physiology.

[11]  G. Matthews,et al.  Inhibition of calcium influx and calcium current by gamma-aminobutyric acid in single synaptic terminals. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A Kaneko,et al.  Effects of gamma‐aminobutyric acid on isolated cone photoreceptors of the turtle retina. , 1986, The Journal of physiology.

[13]  F. Werblin,et al.  A sign‐reversing pathway from rods to double and single cones in the retina of the tiger salamander. , 1983, The Journal of physiology.

[14]  F. Werblin,et al.  Lateral interactions in absence of feedback to cones. , 1983, Journal of neurophysiology.

[15]  M. Wong-Riley Synaptic organization of the inner plexiform layer in the retina of the tiger salamander , 1974, Journal of neurocytology.

[16]  S. Watanabe,et al.  GABA-mediated negative feedback and color opponency in carp retina. , 1982, The Japanese journal of physiology.

[17]  G. Wald,et al.  Visual Pigments in Human and Monkey Retinas , 1963, Nature.

[18]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[19]  D. Attwell,et al.  A presynaptic action of glutamate at the cone output synapse , 1988, Nature.

[20]  S. Baer,et al.  Background-induced flicker enhancement in cat retinal horizontal cells. II. Spatial properties. , 1990, Journal of neurophysiology.

[21]  W. Stell,et al.  Color‐specific interconnections of cones and horizontal cells in the retina of the goldfish , 1975, The Journal of comparative neurology.

[22]  P. Ahnelt,et al.  Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties. , 1990, Journal of neurophysiology.

[23]  S. Wu,et al.  Input-output relations of the feedback synapse between horizontal cells and cones in the tiger salamander retina. , 1991, Journal of neurophysiology.

[24]  R. Marc The Anatomy of Multiple Gabaergic and Glycinergic Pathways in the Inner Plexiform Layer of The Goldfish Retina , 1989 .

[25]  D. Attwell,et al.  The properties of single cones isolated from the tiger salamander retina , 1982, The Journal of physiology.

[26]  D. Baylor,et al.  Receptive fields of cones in the retina of the turtle , 1971, The Journal of physiology.

[27]  A. Kaneko,et al.  L-glutamate-induced depolarization in solitary photoreceptors: a process that may contribute to the interaction between photoreceptors in situ. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. M. Wu,et al.  Modulation of rod-cone coupling by light. , 1989, Science.

[29]  F. Werblin,et al.  The response properties of the steady antagonistic surround in the mudpuppy retina. , 1978, The Journal of physiology.

[30]  A Kaneko,et al.  Receptive field organization of bipolar and amacrine cells in the goldfish retina , 1973, The Journal of physiology.

[31]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[32]  D. A. Burkhardt,et al.  Responses and receptive-field organization of cones in perch retinas. , 1977, Journal of neurophysiology.

[33]  X L Yang,et al.  Effects of background illumination on the horizontal cell responses in the tiger salamander retina , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.