A selection model for motion processing in area MT of primates

A computational model for motion processing in area MT is presented that is based on the observed response properties of cortical neurons and is consistent with the visual perception of partially occluded and transparent moving stimuli. In contrast to models of motion processing that assume spatial continuity and fail to compute the correct velocity for these visual stimuli, our model produces a distributed segmentation of the image into disjoint patches that represent distinct objects moving with common velocities. A key element in the model is the selection of regions of the visual field where the velocity estimates are most reliable. The processing units in the motion model that perform the selection have nonclassical receptive fields similar to those observed in area MT (Allman et al., 1985). The psychophysical responses of the model to coherently moving random dots and transparent plaid gratings are similar to those observed in primates.

[1]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[2]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of striate cortical neurones , 1975, Nature.

[3]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[4]  R. Sekuler,et al.  Adaptation alters perceived direction of motion , 1976, Vision Research.

[5]  L. Maffei,et al.  Spatial frequency rows in the striate visual cortex , 1977, Vision Research.

[6]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[7]  D. Pollen,et al.  Relationship between spatial frequency selectivity and receptive field profile of simple cells. , 1979, The Journal of physiology.

[8]  M. Morgan,et al.  Conditions for motion flow in dynamic visual noise , 1980, Vision Research.

[9]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  K. Nakayama,et al.  Psychophysical isolation of movement sensitivity by removal of familiar position cues , 1981, Vision Research.

[11]  Steven W. Zucker,et al.  Continuous Relaxation and Local Maxima Selection: Conditions for Equivalence , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  S. McKee A local mechanism for differential velocity detection , 1981, Vision Research.

[13]  R. Holub,et al.  Response of Visual Cortical Neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. , 1981, Journal of neurophysiology.

[14]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[15]  C. Gross,et al.  Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[16]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[17]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[18]  BELA JULESZ,et al.  Rapid discrimination of visual patterns , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[20]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[21]  S. McKee,et al.  The detection of motion in the peripheral visual field , 1984, Vision Research.

[22]  Robert Sekuler,et al.  Coherent global motion percepts from stochastic local motions , 1984, Vision Research.

[23]  S. McKee,et al.  Sequential recruitment in the discrimination of velocity. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[24]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[25]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[26]  W. Newsome,et al.  Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[28]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[29]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[30]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[31]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[32]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[33]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  Keiji Tanaka,et al.  Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Geoffrey E. Hinton,et al.  Separating Figure from Ground with a Parallel Network , 1986, Perception.

[36]  S. McKee,et al.  Precise velocity discrimination despite random variations in temporal frequency and contrast , 1986, Vision Research.

[37]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. , 1986, Journal of neurophysiology.

[38]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[39]  田中 啓治 Analysis of Local and Wide-Field Movements in the Superior Temporal Visual Areas of the Macaque Monkey , 1987 .

[40]  V. Ramachandran,et al.  Motion capture anisotropy , 1987, Vision Research.

[41]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[42]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[43]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[44]  K. Nakayama,et al.  The aperture problem—I. Perception of nonrigidity and motion direction in translating sinusoidal lines , 1988, Vision Research.

[45]  A. Treisman Features and Objects: The Fourteenth Bartlett Memorial Lecture , 1988, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[46]  J H Maunsell,et al.  Representation of three-dimensional visual space in the cerebral cortex. , 1988, Canadian journal of physiology and pharmacology.

[47]  Jerome A. Feldman,et al.  Connectionist Models and Their Properties , 1982, Cogn. Sci..

[48]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[50]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[51]  Leslie Welch,et al.  The perception of moving plaids reveals two motion-processing stages , 1989, Nature.

[52]  C Koch,et al.  Computing motion in the primate's visual system. , 1989, The Journal of experimental biology.

[53]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[54]  Alan L. Yuille,et al.  A Winner-Take-All Mechanism Based on Presynaptic Inhibition Feedback , 1989, Neural Computation.

[55]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[56]  G. Edelman,et al.  Signal and sense : local and global order in perceptual maps , 1990 .

[57]  P. A. Sandon Simulating Visual Attention , 1990, Journal of Cognitive Neuroscience.

[58]  T. D. Albright,et al.  Transparency and coherence in human motion perception , 1990, Nature.

[59]  Alan L. Yuille,et al.  A Model for the Estimate of Local Velocity , 1990, ECCV.

[60]  R. Desimone,et al.  Attentional control of visual perception: cortical and subcortical mechanisms. , 1990, Cold Spring Harbor symposia on quantitative biology.

[61]  Dana H. Ballard,et al.  Active Perception and Reinforcement Learning , 1990, Neural Computation.

[62]  David C. Van Essen,et al.  Information processing strategies and pathways in the primate retina and visual cortex , 1990 .

[63]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  A. Pentland,et al.  Robust estimation of a multi-layered motion representation , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[65]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[66]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. , 1991, Journal of neurophysiology.

[67]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[68]  Terrence J. Sejnowski,et al.  Filter Selection Model for Generating Visual Motion Signals , 1992, NIPS.

[69]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[70]  Thomas D. Albright,et al.  Neural correlates of perceptual motion coherence , 1992, Nature.

[71]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[72]  Roger B. H. Tootell,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1992, Nature.

[73]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[75]  Leif H. Finkel,et al.  Object Discrimination Based on Depth-from-Occlusion , 1992, Neural Computation.

[76]  T D Albright,et al.  Form-cue invariant motion processing in primate visual cortex. , 1992, Science.

[77]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[78]  Mary M. Conte,et al.  Coherence and transparency of moving plaids composed of Fourier and non-Fourier gratings , 1992, Perception & psychophysics.

[79]  A. Rosenfeld,et al.  Perceptual motion transparency : the role of geometrical information , 1992 .

[80]  Norberto M. Grzywacz,et al.  A Local Model for Transparent Motions Based on Spatio-Temporal Filters , 1993 .

[81]  Margaret E. Sereno Neural Computation of Pattern Motion: Modeling Stages of Motion Analysis in the Primate Visual Cortex , 1993 .

[82]  O. Braddick Segmentation versus integration in visual motion processing , 1993, Trends in Neurosciences.

[83]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[84]  R. Born,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1993, Nature.

[85]  T. Albright,et al.  Image Segmentation Cues in Motion Processing: Implications for Modularity in Vision , 1993, Journal of Cognitive Neuroscience.

[86]  Shaul Hochstein,et al.  Isolating the effect of one-dimensional motion signals on the perceived direction of moving two-dimensional objects , 1993, Vision Research.

[87]  T. Albright,et al.  What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors , 1993, Vision Research.

[88]  T. Sejnowski,et al.  A critique of pure vision , 1993 .

[89]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  Terrence J. Sejnowski,et al.  Filter selection model for motion segmentation and velocity integration , 1994 .

[91]  L. Palmer,et al.  Organization of simple cell responses in the three-dimensional (3-D) frequency domain , 1994, Visual Neuroscience.

[92]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. III. Modeling , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[94]  R. Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. II. Physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  L. Palmer,et al.  Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat , 1994, Visual Neuroscience.

[96]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[97]  Mary J. Bravo,et al.  Evidence for two speed signals: a coarse local signal for segregation and a precise global signal for discrimination , 1995, Vision Research.

[98]  Joel L. Davis,et al.  An Introduction to Neural and Electronic Networks , 1995 .

[99]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..