Game-theoretic differential evolution for multiobjective optimization of green sand mould system

Many large-scale engineering problems often take a multiobjective form. Thus, several solution options to the MO problem are usually ascertained by the engineer. Then the most desirable options with respect to the industrial circumstances and online operating conditions are selected. In this work, the trade-off solutions are obtained using the weighted-sum approach. In addition the standard metaheuristic, differential evolution is improved using concepts from evolutionary game theory. These techniques are then applied to solve the industrial green sand mould development problem. The solutions are then examined and discussed from various standpoints.

[1]  Roman B. Statnikov,et al.  Multicriteria Optimization and Engineering , 1995 .

[2]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[3]  W. Hamilton,et al.  The Evolution of Cooperation , 1984 .

[4]  Evangelos Triantaphyllou,et al.  Multi-criteria Decision Making Methods: A Comparative Study , 2000 .

[5]  Pandian Vasant,et al.  Iterative Fuzzy Optimization Approach for Crude Oil Refinery Industry , 2010 .

[6]  Peter C. Fishburn,et al.  Letter to the Editor - Additive Utilities with Incomplete Product Sets: Application to Priorities and Assignments , 1967, Oper. Res..

[7]  Juhani Koski,et al.  Multicriteria Design Optimization , 1990 .

[8]  Pandu R. Vundavilli,et al.  Multi-objective optimization of green sand mould system using evolutionary algorithms , 2012 .

[9]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[10]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[11]  Sushil Kumar,et al.  Optimization of green sand casting process parameters of a foundry by using Taguchi’s method , 2011 .

[12]  Dilip Kumar Pratihar,et al.  Non-linear modelling using central composite design to predict green sand mould properties , 2007 .

[13]  Christodoulos A. Floudas,et al.  Analyzing the interaction of design and control—1. A multiobjective framework and application to binary distillation synthesis , 1994 .

[14]  T. Ganesan,et al.  An Algorithmic Framework for Multiobjective Optimization , 2013, TheScientificWorldJournal.

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  Vimal J. Savsani Multi-Objective Design Optimization of Rolling Element Bearings Using ABC, AIA and PSO Technique , 2013, Int. J. Energy Optim. Eng..

[17]  Zhihua Cui,et al.  Predicted-Velocity Particle Swarm Optimization Using Game-Theoretic Approach , 2006, ICIC.

[18]  Jörgen W. Weibull,et al.  Evolutionary Game Theory , 1996 .

[19]  Lothar Thiele,et al.  Quality Assessment of Pareto Set Approximations , 2008, Multiobjective Optimization.

[20]  Pradyumn Kumar Shukla,et al.  On the Normal Boundary Intersection Method for Generation of Efficient Front , 2007, International Conference on Computational Science.

[21]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[22]  Ivan Zelinka,et al.  Solving Steel Alloying Using Differential Evolution and SOMA , 2013, CISIM.

[23]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[24]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[25]  Vikram Kumar Kamboj,et al.  Scope of Biogeography Based Optimization for Economic Load Dispatch and Multi-Objective Unit Commitment Problem , 2014, Int. J. Energy Optim. Eng..

[26]  Rafik Neji,et al.  Application of Evolutionary Algorithm for Triobjective Optimization: Electric Vehicle , 2014, Int. J. Energy Optim. Eng..

[27]  B. V. Babu,et al.  Optimization of Non-Linear Chemical Processes using Modified Differential Evolution , 2005, IICAI.

[28]  Dynamic optimization of injection molding process variables by evolutionary programming methods , 2012, 2012 International Conference on Computer Communication and Informatics.

[29]  Provas Kumar Roy,et al.  Hybridization of Biogeography-Based: Optimization with Differential Evolution for Solving Optimal Power Flow Problems , 2013, Int. J. Energy Optim. Eng..

[30]  M. N. Vrahatis,et al.  Computing Nash equilibria through computational intelligence methods , 2005 .

[31]  Roman Senkerik,et al.  Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures , 2011 .

[32]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[33]  Mario Giacobini,et al.  An Evolutionary Game-Theoretical Approach to Particle Swarm Optimisation , 2008, EvoWorkshops.

[34]  T. Ganesan,et al.  A comparative study of HNN and Hybrid HNN-PSO techniques in the optimization of distributed generation (DG) power systems , 2011, 2011 International Conference on Advanced Computer Science and Information Systems.