Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature

Cluster analysis is an essential tool in data mining. Several clustering algorithms have been proposed and implemented, most of which are able to find good quality clustering results. However, the majority of the traditional clustering algorithms, such as the K-means, K-medoids, and Chameleon, still depend on being provided a priori with the number of clusters and may struggle to deal with problems where the number of clusters is unknown. This lack of vital information may impose some additional computational burdens or requirements on the relevant clustering algorithms. In real-world data clustering analysis problems, the number of clusters in data objects cannot easily be preidentified and so determining the optimal amount of clusters for a dataset of high density and dimensionality is quite a difficult task. Therefore, sophisticated automatic clustering techniques are indispensable because of their flexibility and effectiveness. This paper presents a systematic taxonomical overview and bibliometric analysis of the trends and progress in nature-inspired metaheuristic clustering approaches from the early attempts in the 1990s until today’s novel solutions. Finally, key issues with the formulation of metaheuristic algorithms as a clustering problem and major application areas are also covered in this paper.

[1]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[2]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[3]  P.H.J. Chong,et al.  A survey of clustering schemes for mobile ad hoc networks , 2005, IEEE Communications Surveys & Tutorials.

[4]  Jianhong Wu,et al.  Data clustering - theory, algorithms, and applications , 2007 .

[5]  Anima Naik,et al.  Data Clustering Based on Teaching-Learning-Based Optimization , 2011, SEMCCO.

[6]  Ganapati Panda,et al.  Automatic clustering algorithm based on multi-objective Immunized PSO to classify actions of 3D human models , 2013, Eng. Appl. Artif. Intell..

[7]  Victor Ströele,et al.  An Ant Colony Optimization for Automatic Data Clustering Problem , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[8]  Ujjwal Maulik,et al.  Automatic Fuzzy Clustering Using Modified Differential Evolution for Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Jonathan Robert Landers,et al.  Machine Learning Approaches to Competing in Fantasy Leagues for the NFL , 2019, IEEE Transactions on Games.

[10]  Chin-Teng Lin,et al.  A review of clustering techniques and developments , 2017, Neurocomputing.

[11]  Yugal Kumar,et al.  Modified Teacher Learning Based Optimization Method for Data Clustering , 2014, SIRS.

[12]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[13]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[14]  Taher Niknam,et al.  A Hybrid Evolutionary Algorithm Based on ACO and SA for Cluster Analysis , 2008 .

[15]  Swagatam Das,et al.  Automatic Clustering Based on Invasive Weed Optimization Algorithm , 2011, SEMCCO.

[16]  Sancho Salcedo-Sanz,et al.  Fuzzy Clustering with Grouping Genetic Algorithms , 2013, IDEAL.

[17]  S Sathappan,et al.  A Literature Study on Traditional Clustering Algorithms for Uncertain Data , 2017 .

[18]  R. Sivakumar,et al.  Ant-based Clustering Algorithms: A Brief Survey , 2010 .

[19]  Alex Alves Freitas,et al.  A Survey of Evolutionary Algorithms for Clustering , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[20]  Luis F. Lago-Fernández,et al.  Normality-based validation for crisp clustering , 2010, Pattern Recognit..

[21]  Jitender Kumar Chhabra,et al.  Sustainable automatic data clustering using hybrid PSO algorithm with mutation , 2019, Sustain. Comput. Informatics Syst..

[22]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[23]  R. J. Kuo,et al.  Automatic clustering using an improved artificial bee colony optimization for customer segmentation , 2018, Knowledge and Information Systems.

[24]  Constance Kalu,et al.  Application of K-Means Algorithm for Efficient Customer Segmentation: A Strategy for Targeted Customer Services , 2015 .

[25]  Li-Yeh Chuang,et al.  Chaotic particle swarm optimization for data clustering , 2011, Expert Syst. Appl..

[26]  Ameer Ahmed Abbasi,et al.  A survey on clustering algorithms for wireless sensor networks , 2007, Comput. Commun..

[27]  Ajith Abraham,et al.  Industry 4.0: A bibliometric analysis and detailed overview , 2019, Eng. Appl. Artif. Intell..

[28]  Dervis Karaboga,et al.  Dynamic clustering with improved binary artificial bee colony algorithm , 2015, Appl. Soft Comput..

[29]  Rakesh Kumar,et al.  Clustering algorithms for wireless sensor networks: A review , 2015, 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom).

[30]  Saeed Jalili,et al.  Dynamic clustering using combinatorial particle swarm optimization , 2012, Applied Intelligence.

[31]  Keshav Kaushik,et al.  A Hybrid Data Clustering Using Firefly Algorithm Based Improved Genetic Algorithm , 2015 .

[32]  Dinesh Kumar,et al.  Automatic cluster evolution using gravitational search algorithm and its application on image segmentation , 2014, Eng. Appl. Artif. Intell..

[33]  Amit Konar,et al.  Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm , 2008, Pattern Recognit. Lett..

[34]  Xiaoyong Liu,et al.  An Effective Clustering Algorithm With Ant Colony , 2010, J. Comput..

[35]  G. Wiselin Jiji,et al.  MBA-IF:A New Data Clustering Method Using Modified Bat Algorithm and Levy Flight , 2015, SOCO 2015.

[36]  Habibollah Agh Atabay,et al.  A clustering algorithm based on integration of K-Means and PSO , 2016, 2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC).

[37]  Zhen Ji,et al.  A Fast Bacterial Swarming Algorithm for high-dimensional function optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[38]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Ezugwu E. Absalom,et al.  Symbiotic organisms search algorithm: Theory, recent advances and applications , 2019, Expert Syst. Appl..

[40]  Urszula Boryczka,et al.  Finding Groups in Data: Cluster Analysis with Ants , 2006, Sixth International Conference on Intelligent Systems Design and Applications.

[41]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[42]  Mohammed Azmi Al-Betar,et al.  A survey on applications and variants of the cuckoo search algorithm , 2017, Appl. Soft Comput..

[43]  R. J. Kuo,et al.  Automatic kernel clustering with bee colony optimization algorithm , 2014, Inf. Sci..

[44]  Absalom E. Ezugwu,et al.  An Improved Firefly Algorithm for the Unrelated Parallel Machines Scheduling Problem With Sequence-Dependent Setup Times , 2018, IEEE Access.

[45]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[46]  Chu-Sing Yang,et al.  A fast particle swarm optimization for clustering , 2015, Soft Comput..

[47]  Bilal Alatas,et al.  Plant intelligence based metaheuristic optimization algorithms , 2017, Artificial Intelligence Review.

[48]  Camille Roth,et al.  Natural Scales in Geographical Patterns , 2017, Scientific Reports.

[49]  Sandra Paterlini,et al.  Differential evolution and particle swarm optimisation in partitional clustering , 2006, Comput. Stat. Data Anal..

[50]  Dinesh Kumar,et al.  Automatic Data Clustering Using Parameter Adaptive Harmony Search Algorithm and Its Application to Image Segmentation , 2016, J. Intell. Syst..

[51]  Ajith Abraham,et al.  A Bacterial Evolutionary Algorithm for automatic data clustering , 2009, 2009 IEEE Congress on Evolutionary Computation.

[52]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[53]  Leandro Nunes de Castro,et al.  A New Encoding Scheme for a Bee-Inspired Optimal Data Clustering Algorithm , 2013 .

[54]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[55]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[56]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[57]  Rasul Enayatifar,et al.  Efficient clustering in collaborative filtering recommender system: Hybrid method based on genetic algorithm and gravitational emulation local search algorithm. , 2019, Genomics.

[58]  D. Karaboga,et al.  A Simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm , 2004 .

[59]  Asgarali Bouyer,et al.  An Efficient Hybrid Algorithm using Cuckoo Search and Differential Evolution for Data Clustering , 2015 .

[60]  Tanupriya Choudhury,et al.  Customer Segmentation using K-means Clustering , 2018, 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS).

[61]  K. alik An efficient k'-means clustering algorithm , 2008 .

[62]  Laith Mohammad Abualigah,et al.  Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering , 2017, The Journal of Supercomputing.

[63]  Archana Shirke,et al.  Empirical Analysis of Data Clustering Algorithms , 2018 .

[64]  Bilal Alatas,et al.  ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization , 2011, Expert Syst. Appl..

[65]  Kazem Taghva,et al.  Comparison of Automatic Clustering and Manual Categorization of Documents , 2007 .

[66]  Fabio Blanco-Mesa,et al.  A bibliometric analysis of aggregation operators , 2019, Appl. Soft Comput..

[67]  Ruey S. Tsay,et al.  Analysis of Financial Time Series: Tsay/Analysis of Financial Time Series , 2005 .

[68]  Emanuel Falkenauer,et al.  Genetic Algorithms and Grouping Problems , 1998 .

[69]  Absalom E. Ezugwu,et al.  Ant colony optimization edge selection for support vector machine speed optimization , 2019, Neural Computing and Applications.

[70]  P. Jaccard Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines , 1901 .

[71]  Shikha Mehta,et al.  Enhanced flower pollination algorithm on data clustering , 2016 .

[72]  Aderemi Oluyinka Adewumi,et al.  Discrete symbiotic organisms search algorithm for travelling salesman problem , 2017, Expert Syst. Appl..

[73]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[74]  David G. Stork,et al.  Pattern Classification , 1973 .

[75]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[76]  Serestina Viriri,et al.  Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times , 2018, PloS one.

[77]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[78]  Absalom E. Ezugwu,et al.  Nature Inspired Instance Selection Techniques for Support Vector Machine Speed Optimization , 2019, IEEE Access.

[79]  M. Gluck,et al.  Explaining Basic Categories: Feature Predictability and Information , 1992 .

[80]  Hossam Faris,et al.  An enhanced associative learning-based exploratory whale optimizer for global optimization , 2019, Neural Computing and Applications.

[81]  Marco Dorigo Ant colony optimization , 2004, Scholarpedia.

[82]  Hong He,et al.  A two-stage genetic algorithm for automatic clustering , 2012, Neurocomputing.

[83]  G. W. Milligan,et al.  Methodology Review: Clustering Methods , 1987 .

[84]  Mohammed Azmi Al-Betar,et al.  Unsupervised Text Feature Selection Technique Based on Particle Swarm Optimization Algorithm for Improving the Text Clustering , 2017 .

[85]  Navid Razmjooy,et al.  A New Meta-Heuristic Optimization Algorithm Inspired by FIFA World Cup Competitions: Theory and Its Application in PID Designing for AVR System , 2016 .

[86]  Janez Brest,et al.  A comprehensive review of firefly algorithms , 2013, Swarm Evol. Comput..

[87]  Mohammad Reza Meybodi,et al.  A new hybrid approach for data clustering using firefly algorithm and K-means , 2012, The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012).

[88]  M.-C. Su,et al.  A new cluster validity measure and its application to image compression , 2004, Pattern Analysis and Applications.

[89]  Amit Konar,et al.  Kernel based automatic clustering using modified particle swarm optimization algorithm , 2007, GECCO '07.

[90]  Himansu Sekhar Behera,et al.  An Improved Firefly Fuzzy C-Means (FAFCM) Algorithm for Clustering Real World Data Sets , 2014 .

[91]  Ali Asghar Rahmani Hosseinabadi,et al.  Nature Inspired Partitioning Clustering Algorithms: A Review and Analysis , 2016, SOFA.

[92]  Rui Wang,et al.  Flower Pollination Algorithm with Bee Pollinator for cluster analysis , 2016, Inf. Process. Lett..

[93]  Zhijian Wu,et al.  A Novel Hybrid Data Clustering Algorithm Based on Artificial Bee Colony Algorithm and K-Means , 2015 .

[94]  Pranab K. Muhuri,et al.  Applied soft computing: A bibliometric analysis of the publications and citations during (2004-2016) , 2018, Appl. Soft Comput..

[95]  Sanghamitra Bandyopadhyay,et al.  A Point Symmetry-Based Clustering Technique for Automatic Evolution of Clusters , 2008, IEEE Transactions on Knowledge and Data Engineering.

[96]  Mingru Zhao,et al.  Data Clustering Using Particle Swarm Optimization , 2014 .

[97]  Karin M. Verspoor,et al.  A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration , 2018, BMC Bioinformatics.

[98]  Amir Masoud Rahmani,et al.  Automatic data clustering using continuous action-set learning automata and its application in segmentation of images , 2017, Appl. Soft Comput..

[99]  Shengzhou Wang,et al.  Clustering analysis based on Chaos Genetic Algorithm , 2010, 2010 Chinese Control and Decision Conference.

[100]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[101]  Hema Banati,et al.  Performance analysis of firefly algorithm for data clustering , 2013 .

[102]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[103]  Songfeng Lu,et al.  Automatic Data Clustering based on Hybrid Atom Search Optimization and Sine-Cosine Algorithm , 2019, 2019 IEEE Congress on Evolutionary Computation (CEC).

[104]  Himansu Sekhar Behera,et al.  Evolutionary Improved Swarm-Based Hybrid K-Means Algorithm for Cluster Analysis , 2016 .

[105]  Ludo Waltman,et al.  Software survey: VOSviewer, a computer program for bibliometric mapping , 2009, Scientometrics.

[106]  Jose A. Romagnoli,et al.  Extracting knowledge from historical databases for process monitoring using feature extraction and data clustering , 2016 .

[107]  Douglas H. Fisher,et al.  Knowledge acquisition via incremental conceptual clustering , 2004, Machine Learning.

[108]  Absalom E. Ezugwu,et al.  Nature-inspired metaheuristic techniques for automatic clustering: a survey and performance study , 2020, SN Applied Sciences.

[109]  Greg Hamerly,et al.  Learning the k in k-means , 2003, NIPS.

[110]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[111]  Don-Lin Yang,et al.  An efficient Fuzzy C-Means clustering algorithm , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[112]  Mohanad Albughdadi,et al.  Density-based particle swarm optimization algorithm for data clustering , 2018, Expert Syst. Appl..

[113]  Xianda Zhang,et al.  A robust dynamic niching genetic algorithm with niche migration for automatic clustering problem , 2010, Pattern Recognit..

[114]  T Watson Layne,et al.  A Genetic Algorithm Approach to Cluster Analysis , 1998 .

[115]  Tunchan Cura,et al.  A particle swarm optimization approach to clustering , 2012, Expert Syst. Appl..

[116]  Absalom E. Ezugwu,et al.  Automatic Data Clustering Using Hybrid Firefly Particle Swarm Optimization Algorithm , 2019, IEEE Access.

[117]  Ian F. C. Smith,et al.  A Bounded Index for Cluster Validity , 2007, MLDM.

[118]  José M. Merigó,et al.  Twenty years of Soft Computing: a bibliometric overview , 2019, Soft Comput..

[119]  Jaya Sil,et al.  Data clustering with mixed features by multi objective genetic algorithm , 2012, 2012 12th International Conference on Hybrid Intelligent Systems (HIS).

[120]  Yongquan Zhou,et al.  Automatic data clustering using nature-inspired symbiotic organism search algorithm , 2019, Knowl. Based Syst..

[121]  José-GarcíaAdán,et al.  Automatic clustering using nature-inspired metaheuristics , 2016 .

[122]  Anand Nayyar,et al.  Comprehensive Analysis & Performance Comparison of Clustering Algorithms for Big Data , 2017 .

[123]  Licheng Jiao,et al.  Dynamic local search based immune automatic clustering algorithm and its applications , 2015, Appl. Soft Comput..

[124]  Hadi Larijani,et al.  ANCH: A New Clustering Algorithm for Wireless Sensor Networks , 2013, 2013 27th International Conference on Advanced Information Networking and Applications Workshops.

[125]  Gadadhar Sahoo,et al.  A Review on Gravitational Search Algorithm and its Applications to Data Clustering & Classification , 2014 .

[126]  Yangyang Li,et al.  Multi-objective Invasive Weed Optimization algortihm for clustering , 2012, 2012 IEEE Congress on Evolutionary Computation.

[127]  Dit-Yan Yeung,et al.  Robust path-based spectral clustering , 2008, Pattern Recognit..

[128]  K. alik,et al.  Validity index for clusters of different sizes and densities , 2011 .

[129]  Punam Bedi,et al.  Cuckoo Search Clustering Algorithm: A novel strategy of biomimicry , 2011, 2011 World Congress on Information and Communication Technologies.

[130]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[131]  Urszula Kuzelewska,et al.  Clustering Algorithms in Hybrid Recommender System on MovieLens Data , 2014 .

[132]  Andries Petrus Engelbrecht,et al.  Dynamic clustering using particle swarm optimization with application in image segmentation , 2006, Pattern Analysis and Applications.

[133]  Hong Wang,et al.  Bacterial Colony Optimization , 2012 .

[134]  Lin-Yu Tseng,et al.  A genetic approach to the automatic clustering problem , 2001, Pattern Recognit..

[135]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[136]  Ashraf B. El-Sisi,et al.  Clustering of chemical data sets for drug discovery , 2014, 2014 9th International Conference on Informatics and Systems.

[137]  V. Mani,et al.  Clustering Using Levy Flight Cuckoo Search , 2012, BIC-TA.

[138]  Absalom E Ezugwu,et al.  Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem , 2018, PloS one.

[139]  Absalom E. Ezugwu,et al.  Enhanced symbiotic organisms search algorithm for unrelated parallel machines manufacturing scheduling with setup times , 2019, Knowl. Based Syst..

[140]  Aderemi Oluyinka Adewumi,et al.  Soft sets based symbiotic organisms search algorithm for resource discovery in cloud computing environment , 2017, Future Gener. Comput. Syst..

[141]  Yaoqi Zhou,et al.  Grid-based prediction of torsion angle probabilities of protein backbone and its application to discrimination of protein intrinsic disorder regions and selection of model structures , 2018, BMC Bioinformatics.

[142]  Nagesh Shukla,et al.  Half a century of computer methods and programs in biomedicine: A bibliometric analysis from 1970 to 2017 , 2020, Comput. Methods Programs Biomed..

[143]  Subhash Sharma Applied multivariate techniques , 1995 .

[144]  Javier Del Ser,et al.  A new grouping genetic algorithm for clustering problems , 2012, Expert Syst. Appl..

[145]  Mohammad Hossein Moattar,et al.  The improved K-means clustering algorithm using the proposed extended PSO algorithm , 2015, 2015 International Congress on Technology, Communication and Knowledge (ICTCK).

[146]  M. Karthikeyan,et al.  Probability based document clustering and image clustering using content-based image retrieval , 2013, Appl. Soft Comput..

[147]  Thao Nguyen-Trang,et al.  A New Clustering Algorithm and Its Application in Assessing the Quality of Underground Water , 2020, Sci. Program..

[148]  Zahir Tari,et al.  A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis , 2014, IEEE Transactions on Emerging Topics in Computing.

[149]  Yuhui Shi,et al.  Metaheuristic research: a comprehensive survey , 2018, Artificial Intelligence Review.

[150]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[151]  S. García,et al.  Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations , 2020, Cognitive Computation.

[152]  Feng Zou,et al.  A survey of teaching-learning-based optimization , 2019, Neurocomputing.

[153]  Jacques P. Mouton,et al.  A comparison of clustering algorithms for automatic modulation classification , 2020, Expert Syst. Appl..

[154]  Hong Peng,et al.  An automatic clustering algorithm inspired by membrane computing , 2015, Pattern Recognit. Lett..

[155]  R. J. Kuo,et al.  Integration of particle swarm optimization and genetic algorithm for dynamic clustering , 2012, Inf. Sci..

[156]  Laith Mohammad Abualigah,et al.  A hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering , 2018, Intell. Decis. Technol..

[157]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[158]  S Sundararajan,et al.  AN EFFICIENT HYBRID APPROACH FOR DATA CLUSTERING USING DYNAMIC K-MEANS ALGORITHM AND FIREFLY ALGORITHM , 2014 .

[159]  Adam Baharum,et al.  Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing , 2015, PloS one.

[160]  Andrei Sorin Sabau Survey of Clustering Based Financial Fraud Detection Research , 2012 .

[161]  Liangpei Zhang,et al.  Automatic Fuzzy Clustering Based on Adaptive Multi-Objective Differential Evolution for Remote Sensing Imagery , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[162]  Sinan Q. Salih,et al.  An Enhanced Version of Black Hole Algorithm via Levy Flight for Optimization and Data Clustering Problems , 2019, IEEE Access.

[163]  Ajith Abraham,et al.  A Scientometric Study of Neurocomputing Publications (1992-2018): An Aerial Overview of Intrinsic Structure , 2018, Publ..

[164]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[165]  Tutut Herawan,et al.  A Systematic Review on Educational Data Mining , 2017, IEEE Access.

[166]  Sanjay Jasola,et al.  A hybrid sequential approach for data clustering using K-Means and particle swarm optimization algorithm , 2011 .

[167]  Rajesh Kumar,et al.  A boundary restricted adaptive particle swarm optimization for data clustering , 2013, Int. J. Mach. Learn. Cybern..

[168]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[169]  Noah A. Rosenberg,et al.  CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure , 2007, Bioinform..

[170]  Anima Naik,et al.  Automatic Clustering Using Teaching Learning Based Optimization , 2014 .

[171]  Mohammed Azmi Al-Betar,et al.  Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering , 2017, Expert Syst. Appl..

[172]  Michalis Vazirgiannis,et al.  Clustering validity assessment: finding the optimal partitioning of a data set , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[173]  Md Zahidul Islam,et al.  A hybrid clustering technique combining a novel genetic algorithm with K-Means , 2014, Knowl. Based Syst..

[174]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[175]  R. J. Kuo,et al.  Automatic Clustering Using an Improved Particle Swarm Optimization , 2013 .

[176]  Guiyi Wei,et al.  Clustering Large Spatial Data with Local-density and its Application , 2009 .

[177]  Zhiyu Li,et al.  LBIRCH: An Improved BIRCH Algorithm Based on Link , 2018, ICMLC.

[178]  Magdalene Marinaki,et al.  A hybrid discrete Artificial Bee Colony - GRASP algorithm for clustering , 2009, 2009 International Conference on Computers & Industrial Engineering.

[179]  José M. Merigó,et al.  Fuzzy decision making: A bibliometric-based review , 2017, J. Intell. Fuzzy Syst..

[180]  Wilfrido Gómez-Flores,et al.  Automatic clustering using nature-inspired metaheuristics: A survey , 2016, Appl. Soft Comput..

[181]  Yingjie Tian,et al.  A Comprehensive Survey of Clustering Algorithms , 2015, Annals of Data Science.

[182]  Ajith Abraham,et al.  Automatic Clustering Using a Synergy of Genetic Algorithm and Multi-objective Differential Evolution , 2009, HAIS.

[183]  Cheng-Lung Huang,et al.  Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering , 2013, Appl. Soft Comput..

[184]  Pranab K. Muhuri,et al.  A Bibliometric Overview of the Field of Type-2 Fuzzy Sets and Systems [Discussion Forum] , 2020, IEEE Computational Intelligence Magazine.

[185]  Ting Liu,et al.  Clustering Billions of Images with Large Scale Nearest Neighbor Search , 2007, 2007 IEEE Workshop on Applications of Computer Vision (WACV '07).

[186]  Mohammed Azmi Al-Betar,et al.  Multi-objectives-based text clustering technique using K-mean algorithm , 2016, 2016 7th International Conference on Computer Science and Information Technology (CSIT).

[187]  V. Mani,et al.  Clustering using firefly algorithm: Performance study , 2011, Swarm Evol. Comput..

[188]  Adriano Lorena Inácio de Oliveira,et al.  Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization , 2015, Expert Syst. Appl..

[189]  Satyasai Jagannath Nanda,et al.  A Grey Wolf Optimizer Based Automatic Clustering Algorithm for Satellite Image Segmentation , 2017 .

[190]  Santosh Kumar Majhi,et al.  Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer , 2018, Karbala International Journal of Modern Science.

[191]  Michalis Vazirgiannis,et al.  Quality Scheme Assessment in the Clustering Process , 2000, PKDD.

[192]  Ajith Abraham,et al.  Automatic clustering with multi-objective Differential Evolution algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[193]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[194]  Bernd Drewes Some Industrial Applications of Text Mining , 2005 .

[195]  Olatz Arbelaitz,et al.  An extensive comparative study of cluster validity indices , 2013, Pattern Recognit..

[196]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[197]  Fuzhen Zhuang,et al.  Clustering in extreme learning machine feature space , 2014, Neurocomputing.

[198]  Thomas Stützle,et al.  Ant Colony Optimization: Overview and Recent Advances , 2018, Handbook of Metaheuristics.

[199]  Yi Zhou,et al.  How many clusters? A robust PSO-based local density model , 2016, Neurocomputing.

[200]  Ujjwal Maulik,et al.  A new Differential Evolution based Fuzzy Clustering for Automatic Cluster Evolution , 2009, 2009 IEEE International Advance Computing Conference.

[201]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[202]  L. Hubert,et al.  Measuring the Power of Hierarchical Cluster Analysis , 1975 .

[203]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[204]  Sakshi Patel,et al.  A study of hierarchical clustering algorithms , 2015, 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom).

[205]  Ujjwal Maulik,et al.  Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery , 2009, Pattern Recognit..

[206]  Caro Lucas,et al.  A novel numerical optimization algorithm inspired from weed colonization , 2006, Ecol. Informatics.

[207]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[208]  James D. Hamilton Time Series Analysis , 1994 .

[209]  Laith Mohammad Abualigah,et al.  A new hybridization strategy for krill herd algorithm and harmony search algorithm applied to improve the data clustering , 2017 .

[210]  E. C. Dalrymple-Alford Measurement of clustering in free recall. , 1970 .

[211]  Yucheng Kao,et al.  Automatic clustering for generalised cell formation using a hybrid particle swarm optimisation , 2014 .

[212]  Ying Wah Teh,et al.  Big Data Clustering: A Review , 2014, ICCSA.

[213]  Walter A. Kosters,et al.  Metrics for Mining Multisets , 2007, SGAI Conf..

[214]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[215]  Charu C. Aggarwal,et al.  Feature Selection for Classification: A Review , 2014, Data Classification: Algorithms and Applications.

[216]  Seyed Abolghasem Mirroshandel,et al.  A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm , 2019, Expert Syst. Appl..

[217]  Absalom E. Ezugwu,et al.  A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems , 2019, Neural Computing and Applications.

[218]  Mohammed Azmi Al-Betar,et al.  A krill herd algorithm for efficient text documents clustering , 2016, 2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE).

[219]  Xiao-qiang Zhao,et al.  Improved kernel possibilistic fuzzy clustering algorithm based on invasive weed optimization , 2015 .

[220]  Carlos Henggeler Antunes,et al.  Automatic Clustering Using a Genetic Algorithm with New Solution Encoding and Operators , 2014, ICCSA.

[221]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[222]  Nikhil R. Pal,et al.  Cluster validation using graph theoretic concepts , 1997, Pattern Recognit..

[223]  Zeshui Xu,et al.  The Structure and Citation Landscape of IEEE Transactions on Fuzzy Systems (1994–2015) , 2018, IEEE Transactions on Fuzzy Systems.

[224]  Xindong Wu,et al.  Automatic clustering using genetic algorithms , 2011, Appl. Math. Comput..

[225]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[226]  Ajith Abraham,et al.  Metaheuristics for Data Clustering and Image Segmentation , 2019, Intelligent Systems Reference Library.

[227]  A. Raftery A Note on Bayes Factors for Log‐Linear Contingency Table Models with Vague Prior Information , 1986 .

[228]  Zhiguang Zhang,et al.  A Novel Data Clustering Algorithm based on Modified Adaptive Particle Swarm Optimization , 2016 .

[229]  Pranab K. Muhuri,et al.  A Review of the Scopes and Challenges of the Modern Real-Time Operating Systems , 2018, Int. J. Embed. Real Time Commun. Syst..