On Minimum Phase

Abstract We discuss the concept of `minimum phase' for scalar semi Hurwitz transfer functions. The latter are rational functions where the denominator polynomial has its roots in the closed left half complex plane. In the present note, minimum phase is defined in terms of the derivative of the argument function of the transfer function. The main tool to characterize minimum phase is the Hurwitz reflection. The factorization of a weakly stable transfer function into an all-pass and a minimum phase system leads to the result that any semi Hurwitz transfer function is minimum phase if, and only if, its numerator polynomial is semi Hurwitz. To characterize the zero dynamics, we use the Byrnes-Isidori form in the time domain and the internal loop form in the frequency domain. The uniqueness of both forms is shown. This is used to show in particular that asymptotic stable zero dynamics of a minimal realization of a transfer function yields minimum phase, but not vice versa.