On problems without polynomial kernels

Kernelization is a strong and widely-applied technique in parameterized complexity. A kernelization algorithm, or simply a kernel, is a polynomial-time transformation that transforms any given parameterized instance to an equivalent instance of the same problem, with size and parameter bounded by a function of the parameter in the input. A kernel is polynomial if the size and parameter of the output are polynomially-bounded by the parameter of the input. In this paper we develop a framework which allows showing that a wide range of FPT problems do not have polynomial kernels. Our evidence relies on hypothesis made in the classical world (i.e. non-parametric complexity), and revolves around a new type of algorithm for classical decision problems, called a distillation algorithm, which is of independent interest. Using the notion of distillation algorithms, we develop a generic lower-bound engine that allows us to show that a variety of FPT problems, fulfilling certain criteria, cannot have polynomial kernels unless the polynomial hierarchy collapses. These problems include k-Path, k-Cycle, k-Exact Cycle, k-Short Cheap Tour, k-Graph Minor Order Test, k-Cutwidth, k-Search Number, k-Pathwidth, k-Treewidth, k-Branchwidth, and several optimization problems parameterized by treewidth and other structural parameters.

[1]  Joachim Kneis,et al.  Divide-and-Color , 2006, WG.

[2]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[3]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[4]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[5]  Rolf Niedermeier,et al.  Parameterized Complexity of Generalized Vertex Cover Problems , 2005, WADS.

[6]  Rodney G. Downey,et al.  Parameterized complexity for the skeptic , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[7]  Bernd Voigt,et al.  Finding Minimally Weighted Subgraphs , 1991, WG.

[8]  Rolf Niedermeier,et al.  An efficient fixed-parameter algorithm for 3-Hitting Set , 2003, J. Discrete Algorithms.

[9]  Yijia Chen,et al.  Lower Bounds for Kernelizations , 2007, Electron. Colloquium Comput. Complex..

[10]  Michael R. Fellows,et al.  The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel , 2006, IWPEC.

[11]  Michael R. Fellows,et al.  On Well-Partial-Order Theory and its Application to Combinatorial Problems of VLSI Design , 1989, SIAM J. Discret. Math..

[12]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[13]  Rolf Niedermeier,et al.  Linear Problem Kernels for NP-Hard Problems on Planar Graphs , 2007, ICALP.

[14]  Henning Fernau,et al.  2 Contents , 1996 .

[15]  Liming Cai,et al.  Subexponential Parameterized Algorithms Collapse the W-Hierarchy , 2001, ICALP.

[16]  Jörg Flum,et al.  Bounded Fixed-Parameter Tractability and log2n Nondeterministic Bits , 2004, ICALP.

[17]  Martin Grohe,et al.  The complexity of first-order and monadic second-order logic revisited , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[18]  Frances A. Rosamond,et al.  Why Is P Not Equal to NP , 2007 .

[19]  Michael R. Fellows,et al.  Nonconstructive Advances in Polynomial-Time Complexity , 1987, Inf. Process. Lett..

[20]  Ker-I Ko On Self-Reducibility and Weak P-Selectivity , 1983, J. Comput. Syst. Sci..

[21]  Ge Xia,et al.  Linear FPT reductions and computational lower bounds , 2004, STOC '04.

[22]  Michael R. Fellows,et al.  FPT is P-Time Extremal Structure I , 2005, ACiD.

[23]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[24]  Noga Alon,et al.  Color-coding , 1995, JACM.

[25]  Liming Cai,et al.  Advice Classes of Parameterized Tractability , 1997, Ann. Pure Appl. Log..

[26]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[27]  H. Bodlaender Classes of graphs with bounded tree-width , 1986 .

[28]  Robin Thomas,et al.  Efficiently four-coloring planar graphs , 1996, STOC '96.

[29]  Henning Fernau,et al.  Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves , 2009, STACS.

[30]  Miriam Di Ianni,et al.  Computation Models for Parameterized Complexity , 1997, Math. Log. Q..

[31]  Moni Naor,et al.  On the Compressibility of NP Instances and Cryptographic Applications , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[32]  Jörg Flum,et al.  Bounded fixed-parameter tractability and log2n nondeterministic bits , 2004, J. Comput. Syst. Sci..

[33]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[34]  Hans L. Bodlaender,et al.  A Cubic Kernel for Feedback Vertex Set , 2007, STACS.

[35]  Michael R. Fellows,et al.  Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related Problems , 2003, CATS.

[36]  Jianer Chen,et al.  Greedy Localization and Color-Coding: Improved Matching and Packing Algorithms , 2006, IWPEC.

[37]  H. Bodlaender,et al.  Analysis of Data Reduction: Transformations give evidence for non-existence of polynomial kernels , 2008 .

[38]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[39]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[40]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[41]  Dorit S. Hochbaum,et al.  Efficient bounds for the stable set, vertex cover and set packing problems , 1983, Discret. Appl. Math..

[42]  Gerhard J. Woeginger,et al.  A Faster FPT Algorithm for Finding Spanning Trees with Many Leaves , 2003, MFCS.

[43]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[44]  Irit Dinur,et al.  The importance of being biased , 2002, STOC '02.

[45]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[46]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[47]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[48]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[49]  Ge Xia,et al.  Parametric Duality and Kernelization: Lower Bounds and Upper Bounds on Kernel Size , 2005, STACS.

[50]  R. Battiti,et al.  Covering Trains by Stations or the Power of Data Reduction , 1998 .

[51]  Dimitrios M. Thilikos,et al.  Fast Parameterized Algorithms for Graphs on Surfaces: Linear Kernel and Exponential Speed-Up , 2004, ICALP.

[52]  Rolf Niedermeier,et al.  Graph-Modeled Data Clustering: Exact Algorithms for Clique Generation , 2005, Theory of Computing Systems.

[53]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[54]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[55]  Reuven Bar-Yehuda,et al.  A Local-Ratio Theorem for Approximating the Weighted Vertex Cover Problem , 1983, WG.

[56]  Rolf Niedermeier,et al.  Fixed‐parameter tractability and data reduction for multicut in trees , 2005, Networks.

[57]  Rolf Niedermeier,et al.  Efficient Data Reduction for DOMINATING SET: A Linear Problem Kernel for the Planar Case , 2002, SWAT.

[58]  N. S. Barnett,et al.  Private communication , 1969 .

[59]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .