Integrated model of visual processing

[1]  Jean Bullier Cortical connections and functional interactions between visual cortical areas , 2003 .

[2]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[3]  J. Bullier,et al.  Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. , 2001, Journal of neurophysiology.

[4]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  G. Laurent,et al.  Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. , 2001, Science.

[6]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[7]  P Girard,et al.  Feedback connections act on the early part of the responses in monkey visual cortex. , 2001, Journal of neurophysiology.

[8]  W. Burke,et al.  Modulatory influence of feedback projections from area 21a on neuronal activities in striate cortex of the cat. , 2000, Cerebral cortex.

[9]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[10]  J. Bakin,et al.  Visual Responses in Monkey Areas V1 and V2 to Three-Dimensional Surface Configurations , 2000, The Journal of Neuroscience.

[11]  M Dojat,et al.  Moving illusory contours activate primary visual cortex: an fMRI study. , 2000, Cerebral cortex.

[12]  Yoichi Sugita,et al.  Grouping of image fragments in primary visual cortex , 1999, Nature.

[13]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[14]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[15]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[16]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[17]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[18]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[19]  M. Rosa Visuotopic Organization of Primate Extrastriate Cortex , 1997 .

[20]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[21]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity , 1997, Visual Neuroscience.

[22]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[23]  J. Kaas,et al.  Extrastriate Cortex in Primates , 1997, Cerebral Cortex.

[24]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[25]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[26]  J. Bullier,et al.  Functional streams in occipito-frontal connections in the monkey , 1996, Behavioural Brain Research.

[27]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[28]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[30]  David Mumford,et al.  Neuronal Architectures for Pattern-theoretic Problems , 1995 .

[31]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  Jean Bullier,et al.  The Role of Area 17 in the Transfer of Information to Extrastriate Visual Cortex , 1994 .

[33]  Kathleen S. Rockland,et al.  Primary Visual Cortex in Primates , 1994, Cerebral Cortex.

[34]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[35]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[36]  P A Salin,et al.  Visuotopic organization of corticocortical connections in the visual system. , 1993, Progress in brain research.

[37]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[39]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  J. Bullier,et al.  Anatomical segregation of two cortical visual pathways in the macaque monkey , 1990, Visual Neuroscience.

[41]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  V S Ramachandran,et al.  Apparent Motion of Subjective Surfaces , 1985, Perception.

[43]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[44]  P. Schiller,et al.  Effect of cooling area 18 on striate cortex cells in the squirrel monkey. , 1982, Journal of neurophysiology.

[45]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[46]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[47]  S. Zeki Functional specialisation in the visual cortex of the rhesus monkey , 1978, Nature.

[48]  J T McIlwain,et al.  Topographic organization and convergence in corticotectal projections from areas 17, 18, and 19 in the cat. , 1977, Journal of neurophysiology.

[49]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.