State and parameter estimation: a nonlinear Luenberger observer approach (long version)

The design of a nonlinear Luenberger observer for an extended nonlinear system resulting from a parameterized linear SISO (single-input single-output) system is studied. From an observability assumption of the system, the existence of such an observer is concluded. In a second step, a novel algorithm for the identification of such a system is suggested. Compared to the adaptive observers available in the literature, it has the advantage to be of low dimension and to admit a strict Lyapunov function.

[1]  Vincent Andrieu,et al.  Dynamic extension without inversion for observers , 2014, 53rd IEEE Conference on Decision and Control.

[2]  Qinghua Zhang,et al.  Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems , 2002, IEEE Trans. Autom. Control..

[3]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[4]  Nahum Shimkin,et al.  Persistency excitation in continuous-time systems , 1987 .

[5]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[6]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[7]  Alain Rapaport,et al.  Design of exponential observers for nonlinear systems by embedding , 2004 .

[8]  Vincent Andrieu,et al.  Convergence Speed of Nonlinear Luenberger Observers , 2014, SIAM J. Control. Optim..

[9]  G. Kreisselmeier Adaptive observers with exponential rate of convergence , 1977 .

[10]  Maria Adler,et al.  Stable Adaptive Systems , 2016 .

[11]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[12]  E. J. McShane,et al.  Extension of range of functions , 1934 .

[13]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[14]  Laurent Bako,et al.  Identification of linear systems with nonlinear Luenberger Observers , 2015, 2015 American Control Conference (ACC).

[15]  Laurent Bako,et al.  State and Parameter Estimation: A Nonlinear Luenberger Observer Approach , 2015, IEEE Transactions on Automatic Control.

[16]  M. Gevers,et al.  Stable adaptive observers for nonlinear time-varying systems , 1987 .

[17]  A. Shoshitaishvili,et al.  Singularities for projections of integral manifolds with applications to control and observation problems , 1990 .

[18]  R. Marino,et al.  Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems , 1995, IEEE Trans. Autom. Control..

[19]  Robert Engel,et al.  Nonlinear observers for autonomous Lipschitz continuous systems , 2003, IEEE Trans. Autom. Control..

[20]  A. Isidori,et al.  A new observer for an unknown harmonic oscillator , 2006 .

[21]  Lorenzo Marconi,et al.  Uniform Practical Nonlinear Output Regulation , 2008, IEEE Transactions on Automatic Control.

[22]  D. Janecki,et al.  Persistency of excitation for continuous-time systems - Time-domain approach , 1987 .