Autonomous gait pattern for a dynamic biped walking

In this paper, we propose an autonomous gait pattern for a dynamic biped walking based on a soft-computing approach. Our control strategy takes simultaneously advantage from a Fuzzy-CMAC based computation of robot’s swing leg’s desired trajectory and a high level control strategy allowing regulating the robot’s average velocity. The main interest of this approach is to proffer to the walking robot autonomy and adaptability involving only one parameter: the average velocity. We present results about transition of velocities and we show that the presented control strategy allows to increase robustness of the walking robot according to perturbation forces.

[1]  Judy A. Franklin,et al.  Biped dynamic walking using reinforcement learning , 1997, Robotics Auton. Syst..

[2]  Gabriel Buche,et al.  Control Strategy for the Robust Dynamic Walk of a Biped Robot , 2006, Int. J. Robotics Res..

[3]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[4]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[5]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Christophe Sabourin,et al.  Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks , 2005, Robotics Auton. Syst..

[7]  Hiroaki Kitano,et al.  Acquisition of humanoid walking motion using genetic algorithm-Considering characteristics of servo modules , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[8]  Jun Morimoto,et al.  Learning from demonstration and adaptation of biped locomotion , 2004, Robotics Auton. Syst..

[9]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[10]  James S. Albus,et al.  Data Storage in the Cerebellar Model Articulation Controller (CMAC) , 1975 .

[11]  Fumio Kanehiro,et al.  Humanoid robot HRP-2 , 2008, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[12]  CHRISTOPHE SABOURIN,et al.  Start, Stop and Transition of Velocities of an under-Actuated Bipedal Robot without Reference Trajectories , 2004, Int. J. Humanoid Robotics.

[13]  Changjiu Zhou,et al.  Reinforcement learning with fuzzy evaluative feedback for a biped robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[15]  Jessy W. Grizzle,et al.  Experimental Validation of a Framework for the Design of Controllers that Induce Stable Walking in Planar Bipeds , 2004, Int. J. Robotics Res..

[16]  Fethi Ben Ouezdou,et al.  Distributed ground/walking robot interaction , 1999, Robotica.

[17]  James S. Albus,et al.  New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)1 , 1975 .

[18]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[19]  W. T. Miller,et al.  CMAC: an associative neural network alternative to backpropagation , 1990, Proc. IEEE.