Robustness in Experiment Design

This paper focuses on the problem of robust experiment design, i.e., how to design an input signal which gives relatively good estimation performance over a large number of systems and model structures. Specifically, we formulate the robust experiment design problem utilizing fundamental limitations on the variance of estimated parametric models as constraints. Using this formulation we design an input signal for situations where only diffuse a priori information is known about the system. Furthermore, we present a robust version of the unprejudiced optimal input design problem. To achieve this, we first develop a closed form solution for the input spectrum which minimizes the maximum weighted integral of the variance of the frequency response estimate over all model structures.

[1]  Graham C. Goodwin,et al.  Relative error issues in sampled data models , 2008 .

[2]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[3]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[4]  Graham C. Goodwin,et al.  ROBUST IDENTIFICATION OF PROCESS MODELS FROM PLANT DATA , 2008 .

[5]  Håkan Hjalmarsson,et al.  Input design via LMIs admitting frequency-wise model specifications in confidence regions , 2005, IEEE Transactions on Automatic Control.

[6]  Tong Zhou,et al.  Frequency response estimation for NCFs of an MIMO plant from closed-loop time-domain experimental data , 2006, IEEE Transactions on Automatic Control.

[7]  Xavier Bombois,et al.  Least costly identification experiment for control , 2006, Autom..

[8]  Lennart Ljung,et al.  Unprejudiced optimal open loop input design for identification of transfer functions , 1985, Autom..

[9]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[10]  G.C. Goodwin,et al.  Evaluation and comparison of robust optimal experiment design criteria , 2006, 2006 American Control Conference.

[11]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[12]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[13]  J. Skilling The Axioms of Maximum Entropy , 1988 .

[14]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[15]  Thomas T. Semon,et al.  Planning of Experiments , 1959 .

[16]  Graham C. Goodwin,et al.  UTILIZING PRIOR KNOWLEDGE IN ROBUST OPTIMAL EXPERIMENT DESIGN , 2006 .

[17]  Graham C. Goodwin,et al.  ROBUST IDENTIFICATION OF PROCESS MODELS FROM PLANT DATA , 2008 .

[18]  Cristian R. Rojas,et al.  Fundamental Limitations on the Variance of Estimated Parametric Models , 2009, IEEE Transactions on Automatic Control.

[19]  Samuel Karlin,et al.  Mathematical Methods and Theory in Games, Programming, and Economics , 1961 .

[20]  G. Pólya,et al.  Functions of One Complex Variable , 1998 .

[21]  Jonas Mårtensson,et al.  Geometric analysis of stochastic model errors in system identification , 2007 .

[22]  W. Marsden I and J , 2012 .

[23]  Graham C. Goodwin,et al.  Good, Bad and Optimal Experiments for Identification , 2006 .

[24]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[25]  Graham C. Goodwin,et al.  Sampled Data Errors in Variables Systems. , 2009 .

[26]  P. Duren Theory of Hp Spaces , 2000 .

[27]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[28]  Samuel Karlin,et al.  Mathematical Methods and Theory in Games, Programming, and Economics , 1961 .

[29]  Cristian R. Rojas,et al.  Robust Experiment Design , 2008 .

[30]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[31]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[32]  Håkan Hjalmarsson,et al.  Robust Input Design Using Sum of Squares Constraints , 2006 .

[33]  W. Rudin Real and complex analysis , 1968 .

[34]  Håkan Hjalmarsson,et al.  How to Make Bias and Variance Errors Insensitive to System and Model Complexity in Identification , 2011, IEEE Transactions on Automatic Control.

[35]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[36]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[37]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[38]  Elliott H. Lieb,et al.  Variational principle for many-fermion systems , 1981 .

[39]  Graham C. Goodwin,et al.  Choosing Between Open- and Closed-Loop Experiments in Linear System Identification , 2007, IEEE Transactions on Automatic Control.

[40]  O. Kempthorne The Design and Analysis of Experiments , 1952 .

[41]  Graham C. Goodwin,et al.  Robust optimal experiment design for system identification , 2007, Autom..

[42]  Raman K. Mehra,et al.  Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .

[43]  J. Cooper,et al.  Theory of Approximation , 1960, Mathematical Gazette.

[44]  Graham C. Goodwin,et al.  Optimal experiment design with diffuse prior information , 2007, 2007 European Control Conference (ECC).

[45]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[46]  L. Ljung Asymptotic variance expressions for identified black-box transfer function models , 1984 .

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  Martin B. Zarrop,et al.  Optimal experiment design for dynamic system identification , 1977 .

[49]  H. Hjalmarsson,et al.  On Some Robustness Issues in Input Design , 2006 .

[50]  Graham C. Goodwin,et al.  On the equivalence of least costly and traditional experiment design for control , 2008, Autom..

[51]  Erik Weyer,et al.  Guaranteed non-asymptotic confidence regions in system identification , 2005, Autom..

[52]  P. Duren Theory of H[p] spaces , 1970 .

[53]  P. Koosis Introduction to H[p] spaces , 1999 .

[54]  Graham C. Goodwin,et al.  Finite sample properties of indirect nonparametric closed-loop identification , 2002, IEEE Trans. Autom. Control..

[55]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[56]  Lennart Ljung,et al.  Optimal experiment designs with respect to the intended model application , 1986, Autom..