EXPLICIT CHARACTERIZATION OF DECENTRALIZED COPRIME FACTORS

Abstract This paper is concerned with the parametrization of all the decentralized stabilizing controllers. The auxiliary diagonal system, which is defined by the diagonal elements of Bezout factors, plays important roles in the parametrization of decentralized controllers. This paper gives an explicit characterization of the auxiliary system.

[1]  A. Ozguler Decentralized control: a stable proper fractional approach , 1990 .

[2]  Manfred Morari,et al.  Interaction measures for systems under decentralized control , 1986, Autom..

[3]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[4]  C. Jacobson,et al.  A connection between state-space and doubly coprime fractional representations , 1984 .

[5]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[6]  Joe H. Chow,et al.  A parametrization approach to optimal H∞ and H2 decentralized control problems , 1993, 1992 American Control Conference.

[7]  G. Vinnicombe,et al.  Fixed structure H∞ control design for multiple plants — A coprirne factorization / LMI based approach , 1997, 1997 European Control Conference (ECC).

[8]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[9]  J. H. Chow,et al.  Decentralized stable factors and a parameterization of decentralized controllers , 1994 .

[10]  Manfred Morari,et al.  Robust Performance of Decentralized Control Systems by Independent Designs , 1987, 1987 American Control Conference.

[11]  K. Glover,et al.  A characterization of all solutions to the four block general distance problem , 1991 .

[12]  M. Araki,et al.  Bounds for closed-loop transfer functions of multivariable systems , 1975 .

[13]  Noboru Sebe,et al.  Decentralized H/sub /spl infin// controller design , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[14]  H. Rosenbrock Design of multivariable control systems using the inverse Nyquist array , 1969 .