HBS-1: A Modular Child-Size 3D Printed Humanoid

An affordable, highly articulated, child-size humanoid robot could potentially be used for various purposes, widening the design space of humanoids for further study. Several findings indicated that normal children and children with autism interact well with humanoids. This paper presents a child-sized humanoid robot (HBS-1) intended primarily for children’s education and rehabilitation. The design approach is based on the design for manufacturing (DFM) and the design for assembly (DFA) philosophies to realize the robot fully using additive manufacturing. Most parts of the robot are fabricated with acrylonitrile butadiene styrene (ABS) using rapid prototyping technology. Servomotors and shape memory alloy actuators are used as actuating mechanisms. The mechanical design, analysis and characterization of the robot are presented in both theoretical and experimental frameworks.

[1]  Tatsuo Arai,et al.  Development of a psychological scale for general impressions of humanoid , 2013, Adv. Robotics.

[2]  R. Pfeifer,et al.  Cognition from the bottom up: on biological inspiration, body morphology, and soft materials , 2014, Trends in Cognitive Sciences.

[3]  David A. Hutchins,et al.  A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors , 2012, PloS one.

[4]  Gordon Cheng,et al.  The ETL-Humanoid system—a high-performance full-body humanoid system for versatile real-world interaction , 2003, Adv. Robotics.

[5]  Frank L. Lewis,et al.  Robot Manipulator Control: Theory and Practice , 2003 .

[6]  Yonas Tadesse Electroactive polymer and shape memory alloy actuators in biomimetics and humanoids , 2013, Smart Structures.

[7]  Robert O. Ambrose,et al.  Robonaut 2 - The first humanoid robot in space , 2011, 2011 IEEE International Conference on Robotics and Automation.

[8]  Sven Behnke,et al.  RoboCup 2011 Humanoid League Winners , 2012, RoboCup.

[9]  Dong-Wook Lee,et al.  Appropriate emotions for facial expressions of 33-DOFs android head EveR-4 H33 , 2012, 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication.

[10]  Takashi Minato,et al.  Evaluation of Android Using Unconscious Recognition , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[11]  Richard G. Snyder,et al.  Anthropometry of U.S. Infants and Children , 1975 .

[12]  Shin-ichiroh Yamamoto,et al.  Recent Trends in Lower-Limb Robotic Rehabilitation Orthosis: Control Scheme and Strategy for Pneumatic Muscle Actuated Gait Trainers , 2014, Robotics.

[13]  Fredrik Rehnmark,et al.  Innovative Robot Archetypes for In-Space Construction and Maintenance , 2005 .

[14]  Karl T. Ulrich,et al.  Product Design and Development , 1995 .

[15]  Hari Krishnan A Semi-Minimalistic Approach to Humanoid Design , 2012 .

[16]  Maureen Byko Personification: The materials science and engineering of humanoid robots , 2003 .

[17]  Junichi Urata,et al.  Design of upper limb by adhesion of muscles and bones — Detail human mimetic musculoskeletal humanoid kenshiro , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Dennis Hong,et al.  Twelve Degree of Freedom Baby Humanoid Head Using Shape Memory Alloy Actuators , 2011 .

[19]  Changjiu Zhou,et al.  Robo-Erectus: a low-cost autonomous humanoid soccer robot , 2004, Adv. Robotics.

[20]  L. Geppert,et al.  Qrio, the robot that could , 2004, IEEE Spectrum.

[21]  Yonas Tadesse,et al.  Humanoid Robot Hand With SMA Actuators and Servo Motors , 2014 .

[22]  Andrew Loomis,et al.  Figure drawing for all it's worth , 1944 .

[23]  Pierre-Yves Oudeyer,et al.  Poppy: a new bio-inspired humanoid robot platform , 2013 .

[24]  MASAYUKI INABA,et al.  Design and implementation of a 35 d.o.f. full-body humanoid that can sit, stand up and grasp an object , 1997, Adv. Robotics.

[25]  Jun-Ho Oh,et al.  Mechanical design of the humanoid robot platform, HUBO , 2007, Adv. Robotics.

[26]  Olivier Stasse,et al.  Modular Architecture for Humanoid Walking Pattern Prototyping and Experiments , 2008, Adv. Robotics.

[27]  Sven Behnke,et al.  Humanoid TeenSize Open Platform NimbRo-OP , 2013, RoboCup.

[28]  R. O. Ambrose,et al.  Robonaut 2 — Initial activities on-board the ISS , 2012, 2012 IEEE Aerospace Conference.

[29]  Sung-Hoon Ahn,et al.  Fabrication of wrist-like SMA-based actuator by double smart soft composite casting , 2015 .

[30]  Gangbing Song,et al.  Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks , 2004 .

[31]  N. Kubota,et al.  Structured learning for partner robots based on natural communication , 2008, 2008 IEEE Conference on Soft Computing in Industrial Applications.

[32]  Atsuo Takanishi,et al.  Walking stabilization based on gait analysis for biped humanoid robot , 2013, Adv. Robotics.

[33]  Dimitris C. Lagoudas,et al.  Thermomechanical characterization of high temperature SMA actuators , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[34]  Hiroaki Kitano,et al.  morph3: a compact-size humanoid robot system capable of acrobatic behavior , 2004, Adv. Robotics.

[35]  Myron A. Diftler,et al.  The Robonaut 2 hand - designed to do work with tools , 2012, 2012 IEEE International Conference on Robotics and Automation.

[36]  Robert O. Ambrose,et al.  Mobile manipulation using NASA's Robonaut , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[37]  Tadahiro Hasegawa,et al.  Modeling of shape memory alloy actuator and tracking control system with the model , 2001, IEEE Trans. Control. Syst. Technol..

[38]  Jagannathan Kanniah,et al.  Practical Robot Design: Game Playing Robots , 2013 .

[39]  Giuseppe Carbone,et al.  Design Issues for Hexapod Walking Robots , 2014, Robotics.

[40]  Masayuki Inaba,et al.  Design Approach of Biologically-Inspired Musculoskeletal Humanoids , 2013 .

[41]  Veljko Potkonjak,et al.  Dynamic modeling of an anthropomimetic robot in contact tasks , 2014, Adv. Robotics.

[42]  S. Priya,et al.  Tailoring the Response Time of Shape Memory Alloy Wires through Active Cooling and Pre-stress , 2010 .

[43]  Yonas Tadesse,et al.  Graphical Facial Expression Analysis and Design Method: An Approach to Determine Humanoid Skin Deformation , 2012 .

[44]  Jun Morimoto,et al.  CB: A Humanoid Research Platform for Exploring NeuroScience , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[45]  J. Jansen,et al.  Review Overview of Actuated Arm Support Systems and Their Applications , 2013 .

[46]  Dan O. Popa,et al.  Human-Robot Upper Body Gesture Imitation Analysis for Autism Spectrum Disorders , 2013, ICSR.

[47]  Qiang Huang,et al.  Modeling and design of a humanoid robotic face based on an active drive points model , 2014, Adv. Robotics.

[48]  Ming-June Tsai,et al.  Study of mandible reconstruction using a fibula flap with application of additive manufacturing technology , 2014, Biomedical engineering online.

[49]  Torbjørn S. Dahl,et al.  Robots in Health and Social Care: A Complementary Technology to Home Care and Telehealthcare? , 2013, Robotics.

[50]  Hashem Ashrafiuon,et al.  Nonlinear Control of a Shape Memory Alloy Actuated Manipulator , 2002 .

[51]  Ilya A. Rybak,et al.  A Neurobiological Perspective on Humanoid Robot Design , 2000, IEEE Intell. Syst..

[52]  Takashi Maeno,et al.  Miniature five-fingered robot hand driven by shape memory alloy actuators , 2006 .

[53]  Jun Morimoto,et al.  Experimental Studies of a Neural Oscillator for Biped Locomotion with QRIO , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[54]  Atsuo Kawamura,et al.  Development of Biped Robot MARI-3 for Jumping , 2010, Adv. Robotics.

[55]  Jun-Ho Oh,et al.  A direct methanol fuel cell system to power a humanoid robot , 2010 .

[56]  David Grunberg,et al.  From RoboNova to HUBO: Platforms for Robot Dance , 2009, FIRA RoboWorld Congress.

[57]  Yoseph Bar-Cohen,et al.  The Coming Robot Revolution , 2009 .

[58]  Masayuki Inaba,et al.  Development of musculoskeletal humanoid Kotaro , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[59]  H. Deng,et al.  Building artificial humans to understand humans , 2007, Journal of Artificial Organs.

[60]  Jannik Fritsch,et al.  Designing a sociable humanoid robot for interdisciplinary research , 2006, Adv. Robotics.

[61]  Hiroaki Kitano,et al.  PINO The Humanoid: A Basic Architecture , 2000, RoboCup.

[62]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[63]  Kamesh Subbarao,et al.  Realizing a Humanoid Neck with Serial Chain Four-bar Mechanism , 2010 .

[64]  Myung-Suk Kim,et al.  Development of Humanoid Robot Design Process - Focused on the concurrent engineering based humanoid robot design , 2005 .

[65]  Carter S. Haines,et al.  Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles , 2015, Science.

[66]  Bernhard Mueller,et al.  Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing , 2012 .

[67]  Hajime Asama,et al.  Development of open platform humanoid robot DARwIn-OP , 2013, Adv. Robotics.

[68]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[69]  Jun-Ho Oh,et al.  Design of Android type Humanoid Robot Albert HUBO , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[70]  Hyun K. Kim,et al.  Biped humanoid robot Mahru III , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[71]  Nikolaos G. Tsagarakis,et al.  iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research , 2007, Adv. Robotics.

[72]  Geoffrey Boothroyd,et al.  Product design for manufacture and assembly , 1994, Comput. Aided Des..

[73]  Chrystopher L. Nehaniv,et al.  Title of paper : KASPAR – A Minimally Expressive Humanoid Robot for Human-Robot Interaction Research , 2009 .

[74]  Henrik Hautop Lund,et al.  Modular behavior-based control for team humanoids , 2004, Adv. Robotics.

[75]  Kenichi Narioka,et al.  Designing Synergistic Walking of a Whole-Body Humanoid Driven by Pneumatic Artificial Muscles: An Empirical Study , 2008, Adv. Robotics.

[76]  Gangbing Song,et al.  Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller , 2003 .

[77]  Vincent Hayward,et al.  Variable structure control of shape memory alloy actuators , 1997 .

[78]  Carter S. Haines,et al.  Hydrogen-fuel-powered bell segments of biomimetic jellyfish , 2012 .

[79]  Ee Sian Neo,et al.  Cybernetic Human HRP-4C: A Humanoid Robot with Human-Like Proportions , 2009, ISRR.

[80]  Yonas Tadesse,et al.  Nylon-muscle-actuated robotic finger , 2015, Smart Structures.

[81]  Yonas Tadesse Actuation Technologies Suitable for Humanoid Robots , 2012 .

[82]  Yonas Tadesse Actuation Technologies for Humanoid Robots with Facial Expressions(HRwFE) , 2013 .