Domain Generalization: A Survey

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most statistical learning algorithms strongly rely on the i.i.d. assumption while in practice the target data often come from a different distribution than the source data, known as domain shift. Domain generalization (DG) aims to achieve OOD generalization by only using source domain data for model learning. Since first introduced in 2011, research in DG has undergone a decade progress. Ten years of research in this topic have led to a broad spectrum of methodologies, e.g., based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and have covered various applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time, a comprehensive literature review is provided to summarize the ten-year development in DG. First, we cover the background by giving the problem definitions and discussing how DG is related to other fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a taxonomy based on their methodologies and motivations. Finally, we conclude this survey with potential research directions.

[1]  D. Tao,et al.  Deep Domain Generalization via Conditional Invariant Adversarial Networks , 2018, ECCV.

[2]  Vladlen Koltun,et al.  Playing for Data: Ground Truth from Computer Games , 2016, ECCV.

[3]  Vittorio Murino,et al.  Model Vulnerability to Distributional Shifts over Image Transformation Sets , 2019, CVPR Workshops.

[4]  Andrew Zisserman,et al.  Automated Flower Classification over a Large Number of Classes , 2008, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.

[5]  Tao Xiang,et al.  Deep Domain-Adversarial Image Generation for Domain Generalisation , 2020, AAAI.

[6]  Johannes Stallkamp,et al.  Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition , 2012, Neural Networks.

[7]  Eric P. Xing,et al.  Learning Robust Representations by Projecting Superficial Statistics Out , 2018, ICLR.

[8]  Lequan Yu,et al.  MS-Net: Multi-Site Network for Improving Prostate Segmentation With Heterogeneous MRI Data , 2020, IEEE Transactions on Medical Imaging.

[9]  Tao Xiang,et al.  Learning to Generate Novel Domains for Domain Generalization , 2020, ECCV.

[10]  Alexei A. Efros,et al.  Ensemble of exemplar-SVMs for object detection and beyond , 2011, 2011 International Conference on Computer Vision.

[11]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[12]  Tongliang Liu,et al.  Domain Generalization via Entropy Regularization , 2020, NeurIPS.

[13]  Yongxin Yang,et al.  Deeper, Broader and Artier Domain Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[14]  Nikos Komodakis,et al.  Unsupervised Representation Learning by Predicting Image Rotations , 2018, ICLR.

[15]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[16]  Michael I. Jordan,et al.  Conditional Adversarial Domain Adaptation , 2017, NeurIPS.

[17]  Yang Yang,et al.  ABD-Net: Attentive but Diverse Person Re-Identification , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[18]  Dirk Van,et al.  Ensemble Methods: Foundations and Algorithms , 2012 .

[19]  Dacheng Tao,et al.  Domain Generalization via Conditional Invariant Representations , 2018, AAAI.

[20]  Tianbao Yang,et al.  Learning Attributes Equals Multi-Source Domain Generalization , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  George J. Pappas,et al.  Model-Based Domain Generalization , 2021, NeurIPS.

[22]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[23]  Dong Xu,et al.  Collaborative and Adversarial Network for Unsupervised Domain Adaptation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  Andrew J. Davison,et al.  End-To-End Multi-Task Learning With Attention , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Ling Shao,et al.  Learning to Learn with Variational Information Bottleneck for Domain Generalization , 2020, ECCV.

[26]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[27]  Ping Luo,et al.  Differentiable Learning-to-Normalize via Switchable Normalization , 2018, ICLR.

[28]  Michael I. Jordan,et al.  Unsupervised Domain Adaptation with Residual Transfer Networks , 2016, NIPS.

[29]  Kurt Keutzer,et al.  Learning Invariant Representations and Risks for Semi-supervised Domain Adaptation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Changick Kim,et al.  Meta Batch-Instance Normalization for Generalizable Person Re-Identification , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[32]  Rameswar Panda,et al.  AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning , 2020, NeurIPS.

[33]  Junmo Kim,et al.  Learning Not to Learn: Training Deep Neural Networks With Biased Data , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Bernhard Schölkopf,et al.  Domain Generalization via Invariant Feature Representation , 2013, ICML.

[35]  Chen-Yu Lee,et al.  Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Shiqi Wang,et al.  Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization , 2020, NeurIPS.

[37]  Andrea Vedaldi,et al.  Learning multiple visual domains with residual adapters , 2017, NIPS.

[38]  Fabio Maria Carlucci,et al.  Domain Generalization by Solving Jigsaw Puzzles , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Majid Mirmehdi,et al.  Detecting humans in RGB-D data with CNNs , 2017, 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA).

[40]  Yoshua Bengio,et al.  Towards Causal Representation Learning , 2021, ArXiv.

[41]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Gilles Blanchard,et al.  Generalizing from Several Related Classification Tasks to a New Unlabeled Sample , 2011, NIPS.

[43]  Liang Zheng,et al.  Learning Part-based Convolutional Features for Person Re-Identification , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Carlos D. Castillo,et al.  Frontal to profile face verification in the wild , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[45]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[46]  Daniel C. Castro,et al.  Domain Generalization via Model-Agnostic Learning of Semantic Features , 2019, NeurIPS.

[47]  Michael I. Jordan,et al.  Learning Transferable Features with Deep Adaptation Networks , 2015, ICML.

[48]  Sanja Fidler,et al.  Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[49]  Tao Xiang,et al.  Generalizable Person Re-Identification by Domain-Invariant Mapping Network , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Andrea Cavallaro,et al.  Omni-Scale Feature Learning for Person Re-Identification , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[51]  Georg Heigold,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2021, ICLR.

[52]  Mengjie Zhang,et al.  Domain Generalization for Object Recognition with Multi-task Autoencoders , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[53]  Stella X. Yu,et al.  Open Compound Domain Adaptation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Ira Kemelmacher-Shlizerman,et al.  The MegaFace Benchmark: 1 Million Faces for Recognition at Scale , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Nicolas Usunier,et al.  End-to-End Object Detection with Transformers , 2020, ECCV.

[56]  Jure Leskovec,et al.  WILDS: A Benchmark of in-the-Wild Distribution Shifts , 2021, ICML.

[57]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Junjie Yan,et al.  A face antispoofing database with diverse attacks , 2012, 2012 5th IAPR International Conference on Biometrics (ICB).

[59]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Sebastian Nowozin,et al.  Meta-Learning Probabilistic Inference for Prediction , 2018, ICLR.

[61]  Yun Fu,et al.  Deep Domain Generalization With Structured Low-Rank Constraint , 2018, IEEE Transactions on Image Processing.

[62]  James Bailey,et al.  Robust Domain Generalisation by Enforcing Distribution Invariance , 2016, IJCAI.

[63]  John C. Duchi,et al.  Certifying Some Distributional Robustness with Principled Adversarial Training , 2017, ICLR.

[64]  Matthijs Douze,et al.  Deep Clustering for Unsupervised Learning of Visual Features , 2018, ECCV.

[65]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[66]  Serge J. Belongie,et al.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[67]  Ling Shao,et al.  MetaNorm: Learning to Normalize Few-Shot Batches Across Domains , 2021, ICLR.

[68]  Bohyung Han,et al.  Learning to Optimize Domain Specific Normalization for Domain Generalization , 2019, ECCV.

[69]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[70]  Anil K. Jain,et al.  Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[71]  Zhitang Chen,et al.  Domain Generalization via Multidomain Discriminant Analysis , 2019, UAI.

[72]  Dong Xu,et al.  Exploiting Low-Rank Structure from Latent Domains for Domain Generalization , 2014, ECCV.

[73]  Christoph H. Lampert,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  Daniel Rueckert,et al.  Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images , 2019, Frontiers in Cardiovascular Medicine.

[75]  Yiming Yang,et al.  DARTS: Differentiable Architecture Search , 2018, ICLR.

[76]  Cuiling Lan,et al.  Style Normalization and Restitution for Generalizable Person Re-Identification , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[77]  Tatsuya Harada,et al.  Maximum Classifier Discrepancy for Unsupervised Domain Adaptation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[78]  Anil K. Jain,et al.  IJB–S: IARPA Janus Surveillance Video Benchmark , 2018, 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS).

[79]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[80]  Bernhard Schölkopf,et al.  On causal and anticausal learning , 2012, ICML.

[81]  Anima Anandkumar,et al.  Contrastive Syn-to-Real Generalization , 2021, ICLR.

[82]  Tao Xiang,et al.  Domain Generalization with MixStyle , 2021, ICLR.

[83]  Sridha Sridharan,et al.  Multi-Component Image Translation for Deep Domain Generalization , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[84]  Quoc V. Le,et al.  CondConv: Conditionally Parameterized Convolutions for Efficient Inference , 2019, NeurIPS.

[85]  Tao Xiang,et al.  Multi-level Factorisation Net for Person Re-identification , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[86]  Yongxin Yang,et al.  Episodic Training for Domain Generalization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[87]  Yufei Wang,et al.  Heterogeneous Domain Generalization Via Domain Mixup , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[88]  Yandong Guo,et al.  Large Scale Incremental Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[89]  Francisco Herrera,et al.  A unifying view on dataset shift in classification , 2012, Pattern Recognit..

[90]  Donald A. Adjeroh,et al.  Unified Deep Supervised Domain Adaptation and Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[91]  Ken-ichi Kawarabayashi,et al.  How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks , 2020, ICLR.

[92]  Barbara Caputo,et al.  Best Sources Forward: Domain Generalization through Source-Specific Nets , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[93]  Taesung Park,et al.  Semantic Image Synthesis With Spatially-Adaptive Normalization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[94]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[95]  Silvio Savarese,et al.  Generalizing to Unseen Domains via Adversarial Data Augmentation , 2018, NeurIPS.

[96]  Kaiming He,et al.  Momentum Contrast for Unsupervised Visual Representation Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[97]  Yongxin Yang,et al.  Learning to Generalize: Meta-Learning for Domain Generalization , 2017, AAAI.

[98]  Kate Saenko,et al.  VisDA: The Visual Domain Adaptation Challenge , 2017, ArXiv.

[99]  Yingli Tian,et al.  Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[100]  Xi Peng,et al.  Learning to Learn Single Domain Generalization , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[101]  Judy Hoffman,et al.  Learning to Balance Specificity and Invariance for In and Out of Domain Generalization , 2020, ECCV.

[102]  Subhransu Maji,et al.  Fine-Grained Visual Classification of Aircraft , 2013, ArXiv.

[103]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[104]  Tao Xiang,et al.  Stochastic Classifiers for Unsupervised Domain Adaptation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[105]  Rama Chellappa,et al.  Normalized Wasserstein for Mixture Distributions With Applications in Adversarial Learning and Domain Adaptation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[106]  Luc Van Gool,et al.  Dynamic Filter Networks , 2016, NIPS.

[107]  Ghassan Hamarneh,et al.  Generalizable Feature Learning in the Presence of Data Bias and Domain Class Imbalance with Application to Skin Lesion Classification , 2019, MICCAI.

[108]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[109]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[110]  Henning Müller,et al.  Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology , 2019, Front. Bioeng. Biotechnol..

[111]  Max Welling,et al.  DIVA: Domain Invariant Variational Autoencoder , 2019, DGS@ICLR.

[112]  Liang Lin,et al.  SNAS: Stochastic Neural Architecture Search , 2018, ICLR.

[113]  Fabio Maria Carlucci,et al.  Hallucinating Agnostic Images to Generalize Across Domains , 2018, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[114]  Sunita Sarawagi,et al.  Efficient Domain Generalization via Common-Specific Low-Rank Decomposition , 2020, ICML.

[115]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[116]  Timothy Hospedales,et al.  Latent Domain Learning with Dynamic Residual Adapters , 2020, ArXiv.

[117]  Tao Xiang,et al.  Incremental Few-Shot Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[118]  C. Villani Optimal Transport: Old and New , 2008 .

[119]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[120]  Sébastien Marcel,et al.  On the effectiveness of local binary patterns in face anti-spoofing , 2012, 2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG).

[121]  Yuxiao Hu,et al.  MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition , 2016, ECCV.

[122]  Elisa Ricci,et al.  Towards Recognizing Unseen Categories in Unseen Domains , 2020, ECCV.

[123]  Svetlana Lazebnik,et al.  Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights , 2018, ECCV.

[124]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[125]  Xin Pan,et al.  YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[126]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[127]  Yunbo Wang,et al.  Adversarial Pyramid Network for Video Domain Generalization , 2019, ArXiv.

[128]  Eric P. Xing,et al.  Self-Challenging Improves Cross-Domain Generalization , 2020, ECCV.

[129]  Daguang Xu,et al.  Generalizing Deep Learning for Medical Image Segmentation to Unseen Domains via Deep Stacked Transformation , 2020, IEEE Transactions on Medical Imaging.

[130]  Geoffrey E. Hinton,et al.  Layer Normalization , 2016, ArXiv.

[131]  Wei-Lun Chao,et al.  An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild , 2016, ECCV.

[132]  Pong C. Yuen,et al.  Multi-Adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[133]  Taesung Park,et al.  CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.

[134]  Anima Anandkumar,et al.  Automated Synthetic-to-Real Generalization , 2020, ICML.

[135]  Shaogang Gong,et al.  Low-Resolution Face Recognition , 2018, ACCV.

[136]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[137]  Ioannis Mitliagkas,et al.  Generalizing to unseen domains via distribution matching , 2019 .

[138]  Wei Zhou,et al.  Feature-Critic Networks for Heterogeneous Domain Generalization , 2019, ICML.

[139]  Francesco Solera,et al.  Performance Measures and a Data Set for Multi-target, Multi-camera Tracking , 2016, ECCV Workshops.

[140]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[141]  Andrew Gordon Wilson,et al.  Averaging Weights Leads to Wider Optima and Better Generalization , 2018, UAI.

[142]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[143]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[144]  Prasad Patil,et al.  Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations , 2020, ArXiv.

[145]  Lequan Yu,et al.  DoFE: Domain-Oriented Feature Embedding for Generalizable Fundus Image Segmentation on Unseen Datasets , 2020, IEEE Transactions on Medical Imaging.

[146]  Cuiling Lan,et al.  Feature Alignment and Restoration for Domain Generalization and Adaptation , 2020, ArXiv.

[147]  Yongxin Yang,et al.  Sequential Learning for Domain Generalization , 2020, ECCV Workshops.

[148]  Dong Xu,et al.  Multi-view Domain Generalization for Visual Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[149]  Tao Xiang,et al.  Learning Generalisable Omni-Scale Representations for Person Re-Identification , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[150]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[151]  Yi Yang,et al.  Contrastive Adaptation Network for Unsupervised Domain Adaptation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[152]  Gao Huang,et al.  Dynamic Neural Networks: A Survey , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[153]  Shruti Tople,et al.  Domain Generalization using Causal Matching , 2020, ICML.

[154]  Mengjie Zhang,et al.  Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[155]  Tal Hassner,et al.  Face recognition in unconstrained videos with matched background similarity , 2011, CVPR 2011.

[156]  Jonathon Shlens,et al.  A Learned Representation For Artistic Style , 2016, ICLR.

[157]  Derek Hoiem,et al.  Learning without Forgetting , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[158]  Xiaogang Wang,et al.  DeepReID: Deep Filter Pairing Neural Network for Person Re-identification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[159]  Anil K. Jain,et al.  Towards Universal Representation Learning for Deep Face Recognition , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[160]  Anil K. Jain,et al.  Face Spoof Detection With Image Distortion Analysis , 2015, IEEE Transactions on Information Forensics and Security.

[161]  Xi Peng,et al.  Uncertainty-guided Model Generalization to Unseen Domains , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[162]  Yutaka Matsuo,et al.  Adversarial Invariant Feature Learning with Accuracy Constraint for Domain Generalization , 2019, ECML/PKDD.

[163]  Aaron C. Courville,et al.  Out-of-Distribution Generalization via Risk Extrapolation (REx) , 2020, ICML.

[164]  Ser-Nam Lim,et al.  Curriculum Manager for Source Selection in Multi-Source Domain Adaptation , 2020, ECCV.

[165]  Longhui Wei,et al.  Person Transfer GAN to Bridge Domain Gap for Person Re-identification , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[166]  Anil K. Jain,et al.  IARPA Janus Benchmark - C: Face Dataset and Protocol , 2018, 2018 International Conference on Biometrics (ICB).

[167]  Yi Yang,et al.  Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[168]  Tao Xiang,et al.  Domain Adaptive Ensemble Learning , 2020, IEEE Transactions on Image Processing.

[169]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[170]  Benjamin Recht,et al.  Do ImageNet Classifiers Generalize to ImageNet? , 2019, ICML.

[171]  M. Bethge,et al.  Shortcut learning in deep neural networks , 2020, Nature Machine Intelligence.

[172]  Siddhartha Chaudhuri,et al.  Generalizing Across Domains via Cross-Gradient Training , 2018, ICLR.

[173]  Alex ChiChung Kot,et al.  Domain Generalization with Adversarial Feature Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[174]  Barbara Caputo,et al.  Robust Place Categorization With Deep Domain Generalization , 2018, IEEE Robotics and Automation Letters.

[175]  Junnan Li,et al.  Improving out-of-distribution generalization via multi-task self-supervised pretraining , 2020, ArXiv.

[176]  Vineeth N. Balasubramanian,et al.  Zero-Shot Domain Generalization , 2020, BMVC.

[177]  Alexei A. Efros,et al.  Undoing the Damage of Dataset Bias , 2012, ECCV.

[178]  Seunghyun Park,et al.  Domain Generalization Needs Stochastic Weight Averaging for Robustness on Domain Shifts , 2021, ArXiv.

[179]  Dong Xu,et al.  Visual recognition by learning from web data: A weakly supervised domain generalization approach , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[180]  Kate Saenko,et al.  Explainable Deep Classification Models for Domain Generalization , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[181]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[182]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[183]  Lequan Yu,et al.  Learning from Extrinsic and Intrinsic Supervisions for Domain Generalization , 2020, ECCV.

[184]  Gilles Blanchard,et al.  Domain Generalization by Marginal Transfer Learning , 2017, J. Mach. Learn. Res..

[185]  David Lopez-Paz,et al.  Invariant Risk Minimization , 2019, ArXiv.

[186]  Hyo-Eun Kim,et al.  Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks , 2018, NeurIPS.

[187]  Vladimir Vapnik,et al.  Principles of Risk Minimization for Learning Theory , 1991, NIPS.

[188]  Iasonas Kokkinos,et al.  Describing Textures in the Wild , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[189]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[190]  Ye Xu,et al.  Unbiased Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias , 2013, 2013 IEEE International Conference on Computer Vision.

[191]  Tatsuya Harada,et al.  Domain Generalization Using a Mixture of Multiple Latent Domains , 2019, AAAI.

[192]  Fabio Maria Carlucci,et al.  Self-Supervised Learning Across Domains , 2021, IEEE transactions on pattern analysis and machine intelligence.

[193]  Ming Yang,et al.  DeepFace: Closing the Gap to Human-Level Performance in Face Verification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[194]  Jukka Komulainen,et al.  OULU-NPU: A Mobile Face Presentation Attack Database with Real-World Variations , 2017, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017).

[195]  Barbara Caputo,et al.  Domain Generalization with Domain-Specific Aggregation Modules , 2018, GCPR.

[196]  Shaogang Gong,et al.  Scalable Person Re-Identification by Harmonious Attention , 2019, International Journal of Computer Vision.

[197]  Bo Wang,et al.  Moment Matching for Multi-Source Domain Adaptation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[198]  Swami Sankaranarayanan,et al.  MetaReg: Towards Domain Generalization using Meta-Regularization , 2018, NeurIPS.

[199]  Trevor Darrell,et al.  Learning with Side Information through Modality Hallucination , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[200]  Thomas Serre,et al.  HMDB: A large video database for human motion recognition , 2011, 2011 International Conference on Computer Vision.

[201]  Alberto L. Sangiovanni-Vincentelli,et al.  Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization Without Accessing Target Domain Data , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[202]  Bin Li,et al.  Deformable DETR: Deformable Transformers for End-to-End Object Detection , 2020, ICLR.

[203]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[204]  Dariu Gavrila,et al.  An Experimental Study on Pedestrian Classification , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[205]  Xiaogang Wang,et al.  Deep Learning Face Representation from Predicting 10,000 Classes , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[206]  Pheng-Ann Heng,et al.  Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains , 2020, MICCAI.

[207]  Juergen Gall,et al.  Open Set Domain Adaptation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[208]  Xilin Chen,et al.  Cross-Domain Face Presentation Attack Detection via Multi-Domain Disentangled Representation Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[209]  Federico Tombari,et al.  Batch Normalization Embeddings for Deep Domain Generalization , 2020, Pattern Recognit..

[210]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[211]  Mubarak Shah,et al.  UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild , 2012, ArXiv.

[212]  Michal Valko,et al.  Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning , 2020, NeurIPS.

[213]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[214]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[215]  Pieter Abbeel,et al.  Bottleneck Transformers for Visual Recognition , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[216]  Marc Niethammer,et al.  Robust and Generalizable Visual Representation Learning via Random Convolutions , 2020, ICLR.

[217]  Ziqi Wang,et al.  Respecting Domain Relations: Hypothesis Invariance for Domain Generalization , 2020, 2020 25th International Conference on Pattern Recognition (ICPR).

[218]  Nicu Sebe,et al.  Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[219]  Ghassan Hamarneh,et al.  Scanner Invariant Multiple Sclerosis Lesion Segmentation from MRI , 2019, 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI).

[220]  Qi Tian,et al.  Scalable Person Re-identification: A Benchmark , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[221]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[222]  Sethuraman Panchanathan,et al.  Deep Hashing Network for Unsupervised Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[223]  Paolo Favaro,et al.  Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles , 2016, ECCV.

[224]  Chih-Yao Ma,et al.  Frustratingly Simple Domain Generalization via Image Stylization , 2020, ArXiv.

[225]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[226]  Trevor Darrell,et al.  What you saw is not what you get: Domain adaptation using asymmetric kernel transforms , 2011, CVPR 2011.

[227]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[228]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[229]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[230]  Xilin Chen,et al.  Single-Side Domain Generalization for Face Anti-Spoofing , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[231]  Sridha Sridharan,et al.  Correlation-aware Adversarial Domain Adaptation and Generalization , 2019, Pattern Recognit..

[232]  Yun Fu,et al.  Deep Domain Generalization With Structured Low-Rank Constraint. , 2018, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[233]  Christopher Joseph Pal,et al.  A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms , 2019, ICLR.

[234]  Rémi Ronfard,et al.  Free viewpoint action recognition using motion history volumes , 2006, Comput. Vis. Image Underst..

[235]  Yu Qiao,et al.  A Discriminative Feature Learning Approach for Deep Face Recognition , 2016, ECCV.

[236]  Stan Z. Li,et al.  Learn Convolutional Neural Network for Face Anti-Spoofing , 2014, ArXiv.

[237]  Benjamin Recht,et al.  Measuring Robustness to Natural Distribution Shifts in Image Classification , 2020, NeurIPS.

[238]  Amos Storkey,et al.  Meta-Learning in Neural Networks: A Survey , 2020, IEEE transactions on pattern analysis and machine intelligence.

[239]  David Lopez-Paz,et al.  In Search of Lost Domain Generalization , 2020, ICLR.

[240]  Christoph H. Lampert,et al.  Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[241]  Pietro Perona,et al.  Recognition in Terra Incognita , 2018, ECCV.

[242]  Balaji Lakshminarayanan,et al.  AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty , 2020, ICLR.

[243]  Mihaela van der Schaar,et al.  Accounting for Unobserved Confounding in Domain Generalization , 2020 .

[244]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[245]  Tatiana Tommasi,et al.  Rethinking Domain Generalization Baselines , 2021, 2020 25th International Conference on Pattern Recognition (ICPR).

[246]  Xiaoou Tang,et al.  Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net , 2018, ECCV.

[247]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[248]  Yongxin Yang,et al.  Deep Multi-task Representation Learning: A Tensor Factorisation Approach , 2016, ICLR.

[249]  Thomas G. Dietterich,et al.  Benchmarking Neural Network Robustness to Common Corruptions and Perturbations , 2018, ICLR.