Evolution of Self-diagnosing Hardware

The evolution of digital circuits performing built-in self-test behaviour is attempted in simulation for a one bit adder and a two bit multiplier. Promising results show evolved designs can perform a better diagnosis using less resources than hand-designed equivalents. Future extensions of the approach could allow the self-diagnosis of analog circuits under failure and abnormal operating conditions.

[1]  Tatiana Kalganova,et al.  Bidirectional incremental evolution in extrinsic evolvable hardware , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[2]  Paul J. Layzell,et al.  A New Research Tool for Intrinsic Hardware Evolution , 1998, ICES.

[3]  Inman Harvey,et al.  Unconstrained Evolution and Hard Consequences , 1995, Towards Evolvable Hardware.

[4]  Julian Francis Miller,et al.  On the filtering properties of evolved gate arrays , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[5]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[6]  Julian Francis Miller,et al.  Towards the automatic design of more efficient digital circuits , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[7]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[8]  Andrew M. Tyrrell,et al.  Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation , 2002, IEEE Trans. Evol. Comput..

[9]  R. O. Canham,et al.  A MULTILAYERED IMMUNE SYSTEM FOR HARDWARE FAULT TOLERANCE WITHIN AN EMBRYONIC ARRAY , 2002 .

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[12]  Algirdas Avižienis,et al.  Design Diversity and the Immune System Paradigm : Cornerstones for Information System Survivability AlgirdasAvižienis , 2000 .

[13]  Paul J. Layzell,et al.  Analysis of unconventional evolved electronics , 1999, CACM.

[14]  Andreas Steininger,et al.  Testing and built-in self-test - A survey , 2000, J. Syst. Archit..

[15]  Hans-Joachim Wunderlich,et al.  BIST for systems-on-a-chip , 1998, Integr..

[16]  John D. Provence,et al.  RMBITP: A reconfigurable matrix based built-in self-test processor , 1997 .

[17]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[18]  Jim Tørresen,et al.  A Divide-and-Conquer Approach to Evolvable Hardware , 1998, ICES.

[19]  Julian Francis Miller,et al.  Scalability problems of digital circuit evolution evolvability and efficient designs , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[20]  Miodrag Potkonjak,et al.  Low overhead fault-tolerant FPGA systems , 1998, IEEE Trans. Very Large Scale Integr. Syst..

[21]  Christian Dufaza Theoretical properties of LFSRs for built-in self test , 1998, Integr..

[22]  Gianluca Tempesti,et al.  Embryonics: A Microscopic View of the Molecular Architecture , 1998, ICES.

[23]  Miodrag Potkonjak,et al.  On-line fault detection for bus-based field programmable gate arrays , 1998, IEEE Trans. Very Large Scale Integr. Syst..

[24]  Marco Tomassini,et al.  Towards Evolvable Hardware: The Evolutionary Engineering Approach , 1996 .

[25]  Algirdas Avizienis,et al.  Fault Tolerance by Design Diversity: Concepts and Experiments , 1984, Computer.

[26]  John R. Koza,et al.  Reuse, Parameterized Reuse, and Hierarchical Reuse of Substructures in Evolving Electrical Circuits Using Genetic Programming , 1996, ICES.

[27]  Julian Francis Miller,et al.  Principles in the Evolutionary Design of Digital Circuits—Part II , 2000, Genetic Programming and Evolvable Machines.

[28]  Peter Thomson,et al.  Circuit Evolution and Visualisation , 2000, ICES.

[29]  Nick Jakobi,et al.  Half-baked, Ad-hoc and Noisy: Minimal Simulations for Evolutionary Robotics , 1993 .