Neural site of strabismic amblyopia in cats: spatial frequency deficit in primary cortical neurons

[1]  W. Singer,et al.  Functional amblyopia in kittens with unilateral exotropia , 1980, Experimental Brain Research.

[2]  H. Ikeda,et al.  Amblyopia occurs in retinal ganglion cells in cats reared with convergent squint without alternating fixation , 1979, Experimental Brain Research.

[3]  S. Jacobson,et al.  Behavioural studies of spatial vision in cats reared with convergent squint: Is amblyopia due to arrest of development? , 1979, Experimental Brain Research.

[4]  M. Wright,et al.  Properties of LGN cells in kittens reared with convergent squint: A neurophysiological demonstration of amblyopia , 1976, Experimental Brain Research.

[5]  D. Crewther,et al.  Neural site of strabismic amblyopia in cats: X-cell acuities in the LGN , 2004, Experimental Brain Research.

[6]  B. Cleland,et al.  Convergent strabismic amblyopia in cats , 2004, Experimental Brain Research.

[7]  D. Mitchell,et al.  Immediate and long-term effects on visual acuity of surgically induced strabismus in kittens , 2004, Experimental Brain Research.

[8]  H. Ikeda,et al.  Relationship between amblyopia, LGN cell ‘shrinkage’ and cortical ocular dominance in cats , 2004, Experimental Brain Research.

[9]  Y. Chino,et al.  Development of receptive field properties of retinal ganglion cells in kittens raised with a convergent squint , 2004, Experimental Brain Research.

[10]  E Kaplan,et al.  Abnormal orientation bias of LGN neurons in strabismic cats. , 1988, Investigative ophthalmology & visual science.

[11]  I. Gottlob,et al.  Normal pattern electroretinograms in amblyopia. , 1987, Investigative ophthalmology & visual science.

[12]  C. Baker,et al.  The pattern evoked electroretinogram: its variability in normals and its relationship to amblyopia. , 1985, Investigative ophthalmology & visual science.

[13]  P. D. Spear,et al.  Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus. , 1984, Journal of neurophysiology.

[14]  P. D. Spear,et al.  Effects of strabismus on responsivity, spatial resolution, and contrast sensitivity of cat lateral geniculate neurons. , 1984, Journal of neurophysiology.

[15]  Earl L. Smith,et al.  Behavioral studies on the effect of abnormal early visual experience in monkeys: Spatial modulation sensitivity , 1983, Vision Research.

[16]  Y. Chino,et al.  Effects of rearing kittens with convergent strabismus on development of receptive-field properties in striate cortex neurons. , 1983, Journal of neurophysiology.

[17]  R. Blake,et al.  Spatial vision in strabismic cats. , 1983, Journal of neurophysiology.

[18]  F. Duffy,et al.  Animal models of strabismic amblyopia: Comparative behavioral studies , 1983, Behavioural Brain Research.

[19]  D M Levi,et al.  Psychophysical mechanisms in humans with amblyopia. , 1982, American journal of optometry and physiological optics.

[20]  F. Duffy,et al.  Animal models of strabismic amblyopia: physiological studies of visual cortex and the lateral geniculate nucleus. , 1982, Brain research.

[21]  D E Mitchell,et al.  Normality of spatial resolution of retinal ganglion cells in cats with strabismic amblyopia. , 1982, The Journal of physiology.

[22]  J Bullier,et al.  Comparison of response of properties of three types of monosynaptic S-cell in cat striate cortex. , 1982, Journal of Neurophysiology.

[23]  M. Cynader,et al.  Prior strabismus protects kitten cortical neurons from the effects of monocular deprivation , 1981, Brain Research.

[24]  L. Kiorpes,et al.  The time course for the development of strabismic amblyopia in infant monkeys (Macaca nemestrina). , 1980, Investigative ophthalmology & visual science.

[25]  R. C. Van Sluyters,et al.  Experimental strabismus in the kitten. , 1980, Journal of neurophysiology.

[26]  R. M. Carter,et al.  Pattern ERGs are abnormal in many amblyopes. , 1980, Transactions of the ophthalmological societies of the United Kingdom.

[27]  B. Cleland,et al.  Visual resolution and receptive field size: examination of two kinds of cat retinal ganglion cell. , 1979, Science.

[28]  W. Singer,et al.  Squint affects striate cortex cells encoding horizontal image movements , 1979, Brain Research.

[29]  C. Blakemore,et al.  Physiological basis of anisometropic amblyopia. , 1978, Science.

[30]  B. Cleland,et al.  Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. , 1977, Journal of neurophysiology.

[31]  K. Wybar Ocular Motility and Strabismus , 1976 .

[32]  H. Burian,et al.  Binocular vision and ocular motility , 1975 .

[33]  Peter Grigg,et al.  Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal , 1974 .

[34]  C Ware,et al.  Interocular transfer of a visual after‐effect in normal and stereoblind humans , 1974, The Journal of physiology.

[35]  J A Movshon,et al.  Interocular Transfer in Normal Humans, and Those Who Lack Stereopsis , 1972, Perception.

[36]  D. Hubel,et al.  Binocular interaction in striate cortex of kittens reared with artificial squint. , 1965, Journal of neurophysiology.

[37]  D. Hubel,et al.  SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. , 1963, Journal of neurophysiology.

[38]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[39]  E. F. Miller Investigation of the nature and cause of impaired acuity in amblyopia. , 1955, American journal of optometry and archives of American Academy of Optometry.

[40]  Functional amblyopia. , 1947, American journal of ophthalmology.

[41]  H. Burian,et al.  The Dissociation of form Vision and Light Perception in Strabismic Amblyopia , 1944 .