A model for intradendritic computation of binocular disparity

Many complex cells in mammalian primary visual cortex are finely tuned to binocular disparity. In the prevailing model, several binocular simple cells drive each disparity-tuned complex cell. However, some cat complex cells receive direct LGN input, and binocular simple cells are rare in macaque. In our biophysically detailed compartmental model, active dendrites of a single neuron perform the multiple simple-cell-like subunit computations that underlie both orientation and disparity tuning. The responses of our detailed model could be predicted by a simple algebraic formula closely related to an 'energy' model. Adding inhibitory synapses led to sharper, more contrast-invariant tuning curves. Thus active dendrites could contribute to binocular-disparity tuning in complex cells.

[1]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[2]  Tomaso Poggio,et al.  Computations in the vertebrate retina: gain enhancement, differentiation and motion discrimination , 1986, Trends in Neurosciences.

[3]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[4]  T. Poggio,et al.  Retinal ganglion cells: a functional interpretation of dendritic morphology. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[6]  Trichur Raman Vidyasagar,et al.  Multiple mechanisms underlying the orientation selectivity of visual cortical neurones , 1996, Trends in Neurosciences.

[7]  Ning Qian,et al.  Binocular Receptive Field Models, Disparity Tuning, and Characteristic Disparity , 1996, Neural Computation.

[8]  M. Colonnier,et al.  A laminar analysis of the number of round‐asymmetrical and flat‐symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat , 1985, The Journal of comparative neurology.

[9]  M. Lings,et al.  Articles , 1967, Soil Science Society of America Journal.

[10]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[11]  C. Koch,et al.  A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[14]  C. Koch,et al.  The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[16]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[17]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[18]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[19]  David J. Fleet,et al.  Neural encoding of binocular disparity: Energy models, position shifts and phase shifts , 1996, Vision Research.

[20]  Idan Segev,et al.  The morphoelectrotonic transform: a graphical approach to dendritic function , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[22]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[23]  J Rinzel,et al.  Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. , 1973, Biophysical journal.

[24]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[25]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[26]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[27]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[28]  C. Koch,et al.  Synaptic Background Activity Influences Spatiotemporal Integration in Single Pyramidal Cells. , 1991, The Biological bulletin.

[29]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[30]  C. Greer,et al.  Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[32]  Bartlett W. Mel NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron , 1992, Neural Computation.

[33]  Joel L. Davis,et al.  Single neuron computation , 1992 .

[34]  R. Doty,et al.  Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze. , 1977, Journal of neurophysiology.

[35]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[36]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[37]  D. Hubel Exploration of the primary visual cortex, 1955–78 , 1982, Nature.

[38]  N. Grzywacz,et al.  A model of the directional selectivity circuit in retina: transformations by neurons singly and in concert , 1992 .

[39]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[40]  Bartlett W. Mel,et al.  Translation-Invariant Orientation Tuning in Visual “Complex” Cells Could Derive from Intradendritic Computations , 1998, The Journal of Neuroscience.

[41]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[42]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[43]  Doris Y. Tsao,et al.  Receptive fields of disparity-selective neurons in macaque striate cortex , 1999, Nature Neuroscience.

[44]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[45]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.