Representation of central and peripheral vision in the primate cerebral cortex: Insights from studies of the marmoset brain

How the visual field is represented by neurons in the cerebral cortex is one of the most basic questions in visual neuroscience. However, research to date has focused heavily on the small part of the visual field within, and immediately surrounding the fovea. Studies on the cortical representation of the full visual field in the primate brain are still scarce. We have been investigating this issue with electrophysiological and anatomical methods, taking advantage of the small and lissencephalic marmoset brain, which allows easy access to the representation of the full visual field in many cortical areas. This review summarizes our main findings to date, and relates the results to a broader question: is the peripheral visual field processed in a similar manner to the central visual field, but with lower spatial acuity? Given the organization of the visual cortex, the issue can be addressed by asking: (1) Is visual information processed in the same way within a single cortical area? and (2) Are different cortical areas specialized for different parts of the visual field? The electrophysiological data from the primary visual cortex indicate that many aspects of spatiotemporal computation are remarkably similar across the visual field, although subtle variations are detectable. Our anatomical and electrophysiological studies of the extrastriate cortex, on the other hand, suggest that visual processing in the far peripheral visual field is likely to involve a distinct network of specialized cortical areas, located in the depths of the calcarine sulcus and interhemispheric fissure.

[1]  R Gattass,et al.  Topographic organization of cortical input to striate cortex in the Cebus monkey: A fluorescent tracer study , 1991, The Journal of comparative neurology.

[2]  M. Rosa Topographic organisation of extrastriate areas in the flying fox: Implications for the evolution of mammalian visual cortex , 1999, The Journal of comparative neurology.

[3]  Andrew T. Smith,et al.  Surround modulation measured with functional MRI in the human visual cortex. , 2003, Journal of neurophysiology.

[4]  Douglas L Rosene,et al.  Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: An anatomical and neurophysiological study , 2003, The Journal of comparative neurology.

[5]  E. Maguire,et al.  What does the retrosplenial cortex do? , 2009, Nature Reviews Neuroscience.

[6]  G A Orban,et al.  Velocity discrimination in central and peripheral visual field. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[7]  Ikuya Murakami,et al.  The effects of eccentricity and retinal illuminance on the illusory motion seen in a stationary luminance gradient , 2008, Vision Research.

[8]  M. Rosa,et al.  Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey , 2000, The Journal of comparative neurology.

[9]  J Rovamo,et al.  Resolution of gratings oriented along and across meridians in peripheral vision. , 1982, Investigative ophthalmology & visual science.

[10]  J. Horton,et al.  Intrinsic Variability of Ocular Dominance Column Periodicity in Normal Macaque Monkeys , 1996, The Journal of Neuroscience.

[11]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[12]  J. Rovamo,et al.  Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision , 1978, Nature.

[13]  Mohammed Yeasin,et al.  Foveated Vision Sensor and Image Processing - A Review , 2005, Machine Learning and Robot Perception.

[14]  Tristan A. Chaplin,et al.  Contrasting patterns of cortical input to architectural subdivisions of the area 8 complex: a retrograde tracing study in marmoset monkeys. , 2013, Cerebral cortex.

[15]  A. Johnston,et al.  Spatiotemporal contrast sensitivity and visual field locus , 1983, Vision Research.

[16]  S. Zeki The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  C. Furmanski,et al.  An oblique effect in human primary visual cortex , 2000, Nature Neuroscience.

[18]  A. Yagi,et al.  Backscroll illusion in far peripheral vision. , 2007, Journal of vision.

[19]  Eileen Kowler Eye movements: The past 25years , 2011, Vision Research.

[20]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[21]  V. Montero,et al.  Retinotopic organization of striate and peristriate visual cortex in the albino rat. , 1973, Brain research.

[22]  Anthony D. Cate,et al.  Auditory Attention Activates Peripheral Visual Cortex , 2009, PloS one.

[23]  D. Pandya,et al.  Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study , 1994, The Journal of comparative neurology.

[24]  C W Tyler,et al.  Analysis of visual modulation sensitivity. II. Peripheral retina and the role of photoreceptor dimensions. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[25]  B. B. Lee,et al.  Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus , 1996, Visual Neuroscience.

[26]  G. Orban,et al.  The organization of orientation selectivity throughout macaque visual cortex. , 2002, Cerebral cortex.

[27]  I. Rentschler,et al.  Peripheral vision and pattern recognition: a review. , 2011, Journal of vision.

[28]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[29]  Michael S. Landy,et al.  Detection and Discrimination , 1991 .

[30]  Hsin-Hao Yu,et al.  Cortical input to the frontal pole of the marmoset monkey. , 2011, Cerebral Cortex.

[31]  J. Dichgans,et al.  Differential effects of central versus peripheral vision on egocentric and exocentric motion perception , 1973, Experimental Brain Research.

[32]  Robert Desimone,et al.  Cortical Connections of Area V4 in the Macaque , 2008 .

[33]  Jyrki Rovamo,et al.  Identification of facial images in peripheral vision , 2001, Vision Research.

[34]  P. Bessou,et al.  Specificity of the monocular crescents of the visual field in postural control. , 1999, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[35]  Ruey-Song Huang,et al.  Bottom-up Retinotopic Organization Supports Top-down Mental Imagery , 2013, The open neuroimaging journal.

[36]  David Whitaker,et al.  Detection and discrimination of curvature in foveal and peripheral vision , 1993, Vision Research.

[37]  M. Corbetta,et al.  Separate Modulations of Human V1 Associated with Spatial Attention and Task Structure , 2006, Neuron.

[38]  J. Rovamo,et al.  Visual resolution, contrast sensitivity, and the cortical magnification factor , 2004, Experimental Brain Research.

[39]  G. Schneider Two visual systems. , 1969, Science.

[40]  S. Shimojo,et al.  Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes , 1993, Vision Research.

[41]  Istvan Ulbert,et al.  Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey. , 2010, Cerebral cortex.

[42]  E. Peli,et al.  Contour integration in peripheral vision reduces gradually with eccentricity , 2003, Vision Research.

[43]  H. Kennedy,et al.  Anatomical Evidence of Multimodal Integration in Primate Striate Cortex , 2002, The Journal of Neuroscience.

[44]  K. Rockland,et al.  Localization of area prostriata and its projection to the cingulate motor cortex in the rhesus monkey. , 2000, Cerebral cortex.

[45]  A. Cowey,et al.  Preferential representation of the fovea in the primary visual cortex , 1993, Nature.

[46]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[47]  Angelika Lingnau,et al.  Speed encoding in human visual cortex revealed by fMRI adaptation. , 2009, Journal of vision.

[48]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Tristan A. Chaplin,et al.  A Specialized Area in Limbic Cortex for Fast Analysis of Peripheral Vision , 2012, Current Biology.

[50]  Y. Frégnac,et al.  The “silent” surround of V1 receptive fields: theory and experiments , 2003, Journal of Physiology-Paris.

[51]  Kathleen S Rockland,et al.  Multisensory convergence in calcarine visual areas in macaque monkey. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[52]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: I. Three‐dimensional and cytoarchitectonic organization , 2000, The Journal of comparative neurology.

[53]  James T. Mcllwain Point images in the visual system: new interest in an old idea , 1986, Trends in Neurosciences.

[54]  J S Pointer,et al.  THE CORTICAL MAGNIFICATION FACTOR AND PHOTOPIC VISION , 1986, Biological reviews of the Cambridge Philosophical Society.

[55]  R. Mansfield,et al.  Neural Basis of Orientation Perception in Primate Vision , 1974, Science.

[56]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[57]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  G. Elston,et al.  Visual Responses of Neurons in the Middle Temporal Area of New World Monkeys after Lesions of Striate Cortex , 2000, The Journal of Neuroscience.

[59]  P. B. Cipolloni,et al.  Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey , 2004, The Journal of comparative neurology.

[60]  C Blakemore,et al.  Functional architecture of area 17 in normal and monocularly deprived marmosets (Callithrix jacchus) , 1996, Visual Neuroscience.

[61]  D. Levi Crowding—An essential bottleneck for object recognition: A mini-review , 2008, Vision Research.

[62]  D. Whitteridge,et al.  The visual areas in the splenial sulcus of the cat , 1973, The Journal of physiology.

[63]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[64]  Leo L. Lui,et al.  Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus) , 2007, The European journal of neuroscience.

[65]  M G Rosa,et al.  Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). , 1997, Journal of neurophysiology.

[66]  Eero P. Simoncelli,et al.  Representing retinal image speed in visual cortex , 2001, Nature Neuroscience.

[67]  G. Orban,et al.  The influence of eccentricity on receptive field types and orientation selectivity in areas 17 and 18 of the cat , 1981, Brain Research.

[68]  J. Rovamo,et al.  Temporal contrast sensitivity and cortical magnification , 1982, Vision Research.

[69]  V. Casagrande,et al.  Demonstration of ocular dominance columns in a New World primate by means of monocular deprivation , 1981, Brain Research.

[70]  Paul R. Martin,et al.  Spatial coding and response redundancy in parallel visual pathways of the marmoset Callithrix jacchus , 2005, Visual Neuroscience.

[71]  E. Schwartz,et al.  Cerebral Cortex doi:10.1093/cercor/bhn016 The Intrinsic Shape of Human and Macaque Primary Visual Cortex , 2008 .

[72]  Alex R. Wade,et al.  Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. , 2007, Journal of neurophysiology.

[73]  Barbara Sakitt,et al.  Why the cortical magnification factor in rhesus can not be isotropic , 1982, Vision Research.

[74]  W. B. Spatz Loss of ocular dominance columns with maturity in the monkey, Callithrix jacchus , 1989, Brain Research.

[75]  David Troilo,et al.  Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus) , 1993, Vision Research.

[76]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[77]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[78]  J. Kaas,et al.  Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[79]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[80]  Michelle R. Greene,et al.  Scene categorization at large visual eccentricities , 2013, Vision Research.

[81]  S. Celebrini,et al.  Visuo-auditory interactions in the primary visual cortex of the behaving monkey: Electrophysiological evidence , 2008, BMC Neuroscience.

[82]  H. Kennedy,et al.  Two Cortical Systems for Reaching in Central and Peripheral Vision , 2005, Neuron.

[83]  Michael Petrides,et al.  The marmoset brain in stereotaxic coordinates , 2012 .

[84]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[85]  Robert F. Hess,et al.  Mechanisms underlying global stereopsis in fovea and periphery , 2013, Vision Research.

[86]  Leslie G. Ungerleider,et al.  Scene-Selective Cortical Regions in Human and Nonhuman Primates , 2011, The Journal of Neuroscience.

[87]  J J Koenderink,et al.  Detection of coherent movement in peripherally viewed random-dot patterns. , 1983, Journal of the Optical Society of America.

[88]  Xiangmin Xu,et al.  How do functional maps in primary visual cortex vary with eccentricity? , 2007, The Journal of comparative neurology.

[89]  J. B. Levitt,et al.  Comparison of Spatial Summation Properties of Neurons in Macaque V1 and V2 , 2009, Journal of neurophysiology.

[90]  Smith-Kettlewell,et al.  BIOLOGICAL IMAGE MOTION PROCESSING : A REVIEW , 2012 .

[91]  R P Scobey,et al.  Human visual orientation discrimination. , 1982, Journal of neurophysiology.

[92]  R Vogels,et al.  Human orientation discrimination: changes with eccentricity in normal and amblyopic vision. , 1986, Investigative ophthalmology & visual science.

[93]  G. Elston,et al.  The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity , 1997, The Journal of comparative neurology.

[94]  D. Burr,et al.  Motion psychophysics: 1985–2010 , 2011, Vision Research.

[95]  F. Sanides 7 – Representation in the Cerebral Cortex and Its Areal Lamination Patterns , 1972 .

[96]  Omar H. Butt,et al.  The Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology , 2012, Current Biology.

[97]  Elena Borra,et al.  Projections to Early Visual Areas V1 and V2 in the Calcarine Fissure from Parietal Association Areas in the Macaque , 2011, Front. Neuroanat..

[98]  Song-Lin Ding,et al.  Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo‐parahippocampal isthmus and adjoining retrocalcarine areas in the monkey , 2003, The Journal of comparative neurology.

[99]  D. Eagleman Visual illusions and neurobiology , 2001, Nature Reviews Neuroscience.

[100]  C. Cavada,et al.  The anatomical connections of the macaque monkey orbitofrontal cortex. A review. , 2000, Cerebral cortex.

[101]  Steven C. Dakin,et al.  Absence of contour linking in peripheral vision , 1997, Nature.

[102]  P. Buchholz,et al.  The quality of life impact of peripheral versus central vision loss with a focus on glaucoma versus age-related macular degeneration , 2009, Clinical ophthalmology.

[103]  Tristan A. Chaplin,et al.  Representation of the visual field in the primary visual area of the marmoset monkey: Magnification factors, point‐image size, and proportionality to retinal ganglion cell density , 2013, The Journal of comparative neurology.

[104]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[105]  I. Rentschler,et al.  Scale‐invariant superiority of foveal vision in perceptual categorization , 2000, The European journal of neuroscience.

[106]  Sophia Bakola,et al.  Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey , 2014, The Journal of comparative neurology.

[107]  R. Freeman,et al.  Oblique effect: a neural basis in the visual cortex. , 2003, Journal of neurophysiology.

[108]  Leslie G. Ungerleider,et al.  Cortical projections of area V2 in the macaque. , 1997, Cerebral cortex.

[109]  Tristan A. Chaplin,et al.  A Conserved Pattern of Differential Expansion of Cortical Areas in Simian Primates , 2013, The Journal of Neuroscience.

[110]  H Strasburger,et al.  Cortical Magnification Theory Fails to Predict Visual Recognition , 1994, The European journal of neuroscience.

[111]  H H Bülthoff,et al.  Detection of animals in natural images using far peripheral vision , 2001, The European journal of neuroscience.

[112]  Hsin-Hao Yu,et al.  A simple method for creating wide-field visual stimulus for electrophysiology: mapping and analyzing receptive fields using a hemispheric display. , 2010, Journal of vision.

[113]  M. Carrasco,et al.  Isoeccentric locations are not equivalent: The extent of the vertical meridian asymmetry , 2012, Vision Research.

[114]  D. Hubel,et al.  Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  D. Heeger,et al.  Center-surround interactions in foveal and peripheral vision , 2000, Vision Research.

[116]  G. Wang,et al.  Surround modulation in cortical orientation map revealed by optical imaging and its dependency on receptive field eccentricity , 2012, The European journal of neuroscience.

[117]  S. McKee,et al.  The detection of motion in the peripheral visual field , 1984, Vision Research.

[118]  Andrew T. Smith,et al.  The Representation of Egomotion in the Human Brain , 2008, Current Biology.

[119]  C. Galletti,et al.  Wide-Field Retinotopy Defines Human Cortical Visual Area V6 , 2006, The Journal of Neuroscience.

[120]  Orientation Sensitivity in the Peripheral Visual Field , 1984, Perception.

[121]  J. Gallant,et al.  A Three-Dimensional Spatiotemporal Receptive Field Model Explains Responses of Area MT Neurons to Naturalistic Movies , 2011, The Journal of Neuroscience.

[122]  J W Berger,et al.  Age-related macular degeneration. , 2000, The New England journal of medicine.

[123]  R Gattass,et al.  Visual topography of V1 in the Cebus monkey , 1987, The Journal of comparative neurology.

[124]  S. McKee,et al.  Precise velocity discrimination despite random variations in temporal frequency and contrast , 1986, Vision Research.

[125]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[126]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[127]  D. Tolhurst,et al.  Discrimination of natural scenes in central and peripheral vision , 2011, Vision Research.

[128]  S. Shimojo,et al.  Visual illusion induced by sound. , 2002, Brain research. Cognitive brain research.

[129]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[130]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[131]  A. Thiele,et al.  Attention alters spatial integration in macaque V1 in an eccentricity-dependent manner , 2007, Nature Neuroscience.

[132]  Randolph Blake,et al.  Eccentric perception of biological motion is unscalably poor , 2005, Vision Research.

[133]  Song-Lin Ding,et al.  Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent , 2013, The Journal of comparative neurology.

[134]  Uri Polat,et al.  Collinear facilitation and suppression at the periphery , 2011, Vision Research.

[135]  C. Galletti,et al.  The cortical visual area V6: brain location and visual topography , 1999, The European journal of neuroscience.

[136]  C. Casanova,et al.  Functional sub-regions for optic flow processing in the posteromedial lateral suprasylvian cortex of the cat. , 2001, Cerebral cortex.

[137]  C. Kayser,et al.  Eccentricity dependent auditory enhancement of visual stimulus detection but not discrimination , 2013, Front. Integr. Neurosci..

[138]  P Fattori,et al.  Functional properties of neurons in area V1 of awake macaque monkeys: peripheral versus central visual field representation. , 1993, Archives italiennes de biologie.

[139]  C. Sharpe,et al.  Letter: The contrast sensitivity of the peripheral visual field to drifting sinusoidal gratings. , 1974, Vision research.

[140]  M. Rosa,et al.  Uniformity and diversity of response properties of neurons in the primary visual cortex: Selectivity for orientation, direction of motion, and stimulus size from center to far periphery , 2013, Visual Neuroscience.

[141]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[142]  Franco Lepore,et al.  The ventriloquist in periphery: impact of eccentricity-related reliability on audio-visual localization. , 2013, Journal of vision.

[143]  J. D. Mollon,et al.  Vision out of the corner of the eye , 2011, Vision Research.

[144]  M. Rosa,et al.  A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision , 2006, The European journal of neuroscience.

[145]  Christopher W. Tyler,et al.  Brain Mapping: The (Un)Folding of Striate Cortex , 2012, Current Biology.

[146]  Lester C. Loschky,et al.  The contributions of central versus peripheral vision to scene gist recognition. , 2009, Journal of vision.

[147]  S. Appelle Perception and discrimination as a function of stimulus orientation: the "oblique effect" in man and animals. , 1972, Psychological bulletin.

[148]  Sylvain Gagnon,et al.  Near peripheral motion detection threshold correlates with self-reported failures of attention in younger and older drivers. , 2010, Accident; analysis and prevention.

[149]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[150]  K Cheng,et al.  Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. , 1995, Journal of neurophysiology.

[151]  W. B. Spatz The retino-geniculo-cortical pathway in Callithrix. II. The geniculo-cortical projection , 1979, Experimental Brain Research.

[152]  A. Cowey,et al.  The projection of the fovea to the superior colliculus in rhesus monkeys , 1980, Neuroscience.

[153]  Jinglong Wu,et al.  Development of a method to present wide-view visual stimuli in MRI for peripheral visual studies , 2013, Journal of Neuroscience Methods.

[154]  Wolf Zinke,et al.  Speed change detection in foveal and peripheral vision , 2012, Vision Research.

[155]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[156]  D. Tolhurst,et al.  On the variety of spatial frequency selectivities shown by neurons in area 17 of the cat , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[157]  P. Maclean,et al.  Unit analysis of visual input to posterior limbic cortex. I. Photic stimulation. , 1965, Journal of neurophysiology.

[158]  F. Previc Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications , 1990, Behavioral and Brain Sciences.

[159]  S. Levay,et al.  Anatomical organization of the visual system of the mink, Mustela vison , 1986, The Journal of comparative neurology.

[160]  Leo L. Lui,et al.  Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity , 2010, The European journal of neuroscience.

[161]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[162]  Samuel G. Solomon,et al.  A simpler primate brain: the visual system of the marmoset monkey , 2014, Front. Neural Circuits..

[163]  Matteo Carandini,et al.  Two Distinct Mechanisms of Suppression in Human Vision , 2005, The Journal of Neuroscience.

[164]  W. Warren,et al.  The role of central and peripheral vision in perceiving the direction of self-motion , 1992, Perception & psychophysics.

[165]  J. Triesch,et al.  Power spectra of the natural input to the visual system , 2013, Vision Research.

[166]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[167]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[168]  Qiyong Guo,et al.  Retinotopic mapping of the peripheral visual field to human visual cortex by functional magnetic resonance imaging , 2012, Human brain mapping.

[169]  H Ikeda,et al.  Receptive field organization of ‘sustained’ and ‘transient’ retinal ganglion cells which subserve different functional roles , 1972, The Journal of physiology.

[170]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[171]  P. Maclean,et al.  Unit analysis of visual input to posterior limbic cortex. II. Intracerebral stimuli. , 1965, Journal of neurophysiology.

[172]  Nicholas J. Priebe,et al.  The Neural Representation of Speed in Macaque Area MT/V5 , 2003, The Journal of Neuroscience.

[173]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[174]  Thom Carney,et al.  Orientation discrimination as a function of stimulus eccentricity and size: Nasal/temporal retinal asymmetry , 1988, Vision Research.

[175]  S J Anderson,et al.  Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[176]  Marcello G P Rosa,et al.  Brain maps, great and small: lessons from comparative studies of primate visual cortical organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[177]  Karl R Gegenfurtner,et al.  Velocity tuned mechanisms in human motion processing , 1999, Vision Research.

[178]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[179]  D. H. Kelly Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[180]  Paul R. Martin,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[181]  D. L. Adams,et al.  A Precise Retinotopic Map of Primate Striate Cortex Generated from the Representation of Angioscotomas , 2003, The Journal of Neuroscience.

[182]  S. Sherman,et al.  Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity. , 1976, Journal of neurophysiology.

[183]  B. Finlay,et al.  Conservation of Absolute Foveal Area in New World Monkeys , 2000, Brain, Behavior and Evolution.

[184]  Sabrina Pitzalis,et al.  The functional role of the medial motion area V6 , 2013, Front. Behav. Neurosci..

[185]  R. Vautin,et al.  Magnification factor and receptive field size in foveal striate cortex of the monkey , 2004, Experimental Brain Research.