The Stabilized Supralinear Network: A Unifying Circuit Motif Underlying Multi-Input Integration in Sensory Cortex

[1]  Balanced Amplification: A New Mechanism of Selective Amplification of Neural Activity Patterns , 2016, Neuron.

[2]  Thomas D. Mrsic-Flogel,et al.  Experience-Dependent Specialization of Receptive Field Surround for Selective Coding of Natural Scenes , 2014, Neuron.

[3]  Li I. Zhang,et al.  Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex , 2014, Nature Neuroscience.

[4]  Matthias Kaschube,et al.  Neural maps versus salt-and-pepper organization in visual cortex , 2014, Current Opinion in Neurobiology.

[5]  Alex R. Wade,et al.  Representation of Concurrent Stimuli by Population Activity in Visual Cortex , 2014, Neuron.

[6]  Jason Chung,et al.  Plasticity of Recurrent L2/3 Inhibition and Gamma Oscillations by Whisker Experience , 2013, Neuron.

[7]  Ian Nauhaus,et al.  Contrast Dependence and Differential Contributions from Somatostatin- and Parvalbumin-Expressing Neurons to Spatial Integration in Mouse V1 , 2013, The Journal of Neuroscience.

[8]  C. Casanova,et al.  Surround suppression maps in the cat primary visual cortex , 2013, Front. Neural Circuits.

[9]  A. Konnerth,et al.  Making Waves: Initiation and Propagation of Corticothalamic Ca2+ Waves In Vivo , 2013, Neuron.

[10]  Kenneth D. Miller,et al.  Analysis of the Stabilized Supralinear Network , 2012, Neural Computation.

[11]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[12]  David J. Heeger,et al.  Unreliable Evoked Responses in Autism , 2012, Neuron.

[13]  Wilsaan M. Joiner,et al.  Suppressive Surrounds of Receptive Fields In Monkey Frontal Eye Field , 2012, The Journal of Neuroscience.

[14]  Matthew R. Krause,et al.  Surround suppression and sparse coding in visual and barrel cortices , 2012, Front. Neural Circuits.

[15]  D. Ferster,et al.  Feedforward Origins of Response Variability Underlying Contrast Invariant Orientation Tuning in Cat Visual Cortex , 2012, Neuron.

[16]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[17]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[18]  Henning Sprekeler,et al.  Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks , 2011, Science.

[19]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[20]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[21]  Ning Qian,et al.  A Learning-Style Theory for Understanding Autistic Behaviors , 2011, Front. Hum. Neurosci..

[22]  Christopher C. Pack,et al.  Contrast sensitivity of MT receptive field centers and surrounds. , 2011, Journal of neurophysiology.

[23]  Brian P Keane,et al.  Perceptual organization impairment in schizophrenia and associated brain mechanisms: review of research from 2005 to 2010. , 2011, Schizophrenia bulletin.

[24]  G. Turrigiano Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. , 2011, Annual review of neuroscience.

[25]  D. Coppola,et al.  Universality in the Evolution of Orientation Columns in the Visual Cortex , 2010, Science.

[26]  B Suresh Krishna,et al.  Surround Suppression Sharpens the Priority Map in the Lateral Intraparietal Area , 2022 .

[27]  Alessandra Angelucci,et al.  Contrast-dependence of surround suppression in Macaque V1: Experimental testing of a recurrent network model , 2010, NeuroImage.

[28]  Y. Chino,et al.  Receptive‐field properties of V1 and V2 neurons in mice and macaque monkeys , 2010, The Journal of comparative neurology.

[29]  M. London,et al.  Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex , 2010, Nature.

[30]  Jong H. Yoon,et al.  GABA Concentration Is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression , 2010, The Journal of Neuroscience.

[31]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[32]  Matthew R. Krause,et al.  Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation , 2010, Neuron.

[33]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[34]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[35]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[36]  J. B. Levitt,et al.  Comparison of Spatial Summation Properties of Neurons in Macaque V1 and V2 , 2009, Journal of neurophysiology.

[37]  Evan S. Schaffer,et al.  Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression , 2009, Neuron.

[38]  Jude F. Mitchell,et al.  Spatial Attention Modulates Center-Surround Interactions in Macaque Visual Area V4 , 2009, Neuron.

[39]  Sean P. MacEvoy,et al.  A precise form of divisive suppression supports population coding in primary visual cortex , 2009, Nature Neuroscience.

[40]  I. Ohzawa,et al.  Surround suppression of V1 neurons mediates orientation-based representation of high-order visual features. , 2009, Journal of neurophysiology.

[41]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[42]  B. Dreher,et al.  Contrast dependence of center and surround integration in primary visual cortex of the cat. , 2009, Journal of vision.

[43]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[44]  Chaoyi Li,et al.  Contrast-dependent and contrast-independent spatial summation of primary visual cortical neurons of the cat. , 2008, Cerebral cortex.

[45]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[46]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[47]  Tobias Teichert,et al.  Scale-invariance of receptive field properties in primary visual cortex , 2007, BMC Neuroscience.

[48]  A. Mizuno,et al.  A change of the leading player in flow Visualization technique , 2006, J. Vis..

[49]  F. Sengpiel,et al.  Intracortical Origins of Interocular Suppression in the Visual Cortex , 2005, The Journal of Neuroscience.

[50]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[51]  K. Albus A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental Brain Research.

[52]  K. H. Britten,et al.  Contrast dependence of response normalization in area MT of the rhesus macaque. , 2002, Journal of neurophysiology.

[53]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[54]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[55]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[56]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[57]  D. Ferster,et al.  Membrane Potential and Conductance Changes Underlying Length Tuning of Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[58]  I. Ohzawa,et al.  Suppression outside the classical cortical receptive field , 2000, Visual Neuroscience.

[59]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[60]  Haim Sompolinsky,et al.  Chaotic Balanced State in a Model of Cortical Circuits , 1998, Neural Computation.

[61]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[62]  D. Sagi,et al.  Excitatory-inhibitory network in the visual cortex: psychophysical evidence. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[63]  C. Blakemore,et al.  Characteristics of surround inhibition in cat area 17 , 1997, Experimental Brain Research.

[64]  B. McNaughton,et al.  Paradoxical Effects of External Modulation of Inhibitory Interneurons , 1997, The Journal of Neuroscience.

[65]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[67]  S. Edgell,et al.  Effect of violation of normality on the t test of the correlation coefficient. , 1984 .