Visual resolution with retinal implants estimated from recordings in cat visual cortex

We investigated cortical responses to electrical stimulation of the retina using epi- and sub-retinal electrodes of 20-100 microm diameter. Temporal and spatial resolutions were assessed by recordings from the visual cortex with arrays of microelectrodes and optical imaging. The estimated resolutions were approximately 40 ms and approximately 1 degrees of visual angle. This temporal resolution of 25 frames per second and spatial resolution of about 0.8 cm at about 1m and correspondingly 8 cm at 10 m distance seems sufficient for useful object recognition and visuo-motor behavior in many in- and out-door situations of daily life.

[1]  H. Reitboeck,et al.  Fiber microelectrodes for electrophysiological recordings , 1983, Journal of Neuroscience Methods.

[2]  D. L. Adams,et al.  A Precise Retinotopic Map of Primate Striate Cortex Generated from the Representation of Angioscotomas , 2003, The Journal of Neuroscience.

[3]  E. Zrenner,et al.  Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[4]  U. Eysel,et al.  Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17) , 1992, Neuroscience.

[5]  B. McNaughton,et al.  Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex , 1995, Journal of Neuroscience Methods.

[6]  R. Eckhorn,et al.  A new method for the insertion of multiple microprobes into neural and muscular tissue, including fiber electrodes, fine wires, needles and microsensors , 1993, Journal of Neuroscience Methods.

[7]  A. Y. Chow,et al.  Subretinal electrical stimulation of the rabbit retina , 1997, Neuroscience Letters.

[8]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[10]  A. Grinvald,et al.  A tandem-lens epifluorescence macroscope: Hundred-fold brightness advantage for wide-field imaging , 1991, Journal of Neuroscience Methods.

[11]  Mark E. Nelson,et al.  A Mechanism for Neuronal Gain Control by Descending Pathways , 1994, Neural Computation.

[12]  Eberhart Zrenner,et al.  Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit , 2001, Graefe's Archive for Clinical and Experimental Ophthalmology.

[13]  L. Palmer,et al.  The retinotopic organization of area 17 (striate cortex) in the cat , 1978, The Journal of comparative neurology.

[14]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[15]  R. Eckhorn,et al.  Efficiency of different neuronal codes: Information transfer calculations for three different neuronal systems , 1976, Biological Cybernetics.

[16]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[17]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[18]  T. Stieglitz,et al.  Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces , 2000 .

[19]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[20]  R. Eckhorn,et al.  Contour decouples gamma activity across texture representation in monkey striate cortex. , 2000, Cerebral cortex.

[21]  L. Palmer,et al.  Retinotopic organization of areas 18 and 19 in the cat , 1979, The Journal of comparative neurology.

[22]  W. Singer,et al.  The response of cat visual cortex to flicker stimuli of variable frequency , 1998, The European journal of neuroscience.

[23]  O. Creutzfeldt,et al.  [Neurophysiological basis of Brücke-Bartley effect; maxima of impulse frequency of retinal and cortical neurons in flickering light of middle frequency]. , 1957, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[24]  U. Eysel,et al.  Calculating direction maps from intrinsic signals revealed by optical imaging. , 2001, Cerebral cortex.

[25]  C. Gilbert,et al.  Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  H. Dinse,et al.  The timing of processing along the visual pathway in the cat. , 1994, Neuroreport.

[27]  J. Weiland,et al.  Pattern electrical stimulation of the human retina , 1999, Vision Research.

[28]  E. Zrenner,et al.  Electrical multisite stimulation of the isolated chicken retina , 2000, Vision Research.

[29]  S. Ball,et al.  Photoreceptor function of retinal transplants implicated by light-dark shift of S-antigen and rod transducin , 1999, Vision Research.

[30]  K. Horch,et al.  Mobility performance with a pixelized vision system , 1992, Vision Research.

[31]  Thomas Schanze,et al.  Activation zones in cat visual cortex evoked by electrical retina stimulation , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[32]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  A. Y. Chow,et al.  Implantation of silicon chip microphotodiode arrays into the cat subretinal space , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[34]  Otto-Joachim Grüsser,et al.  Eine neurophysiologische Grundlage des Brücke-Bartley-Effektes: Maxima der Impulsfrequenz retinaler und corticaler Neurone bei Flimmerlicht mittlerer Frequenzen , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[35]  D Hickingbotham,et al.  Bipolar surface electrical stimulation of the vertebrate retina. , 1994, Archives of ophthalmology.

[36]  U. Mitzdorf Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. , 1987, The International journal of neuroscience.

[37]  R. H. Propst,et al.  Visual perception elicited by electrical stimulation of retina in blind humans. , 1996, Archives of ophthalmology.

[38]  R. Eckhorn,et al.  Spatiotemporal receptive field properties of epiretinally recorded spikes and local electroretinograms in cats , 2005, BMC Neuroscience.

[39]  K W Horch,et al.  Reading speed with a pixelized vision system. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[40]  Reinhard Eckhorn,et al.  Information transmission from a retina implant to the cat visual cortex , 2004 .

[41]  I Segev,et al.  Signal delay and input synchronization in passive dendritic structures. , 1993, Journal of neurophysiology.

[42]  J. Sjöstrand,et al.  Quantitative estimations of foveal and extra-foveal retinal circuitry in humans , 1999, Vision Research.

[43]  Professor Dr. Guy A. Orban Neuronal Operations in the Visual Cortex , 1983, Studies of Brain Function.

[44]  D. J. Warren,et al.  A neural interface for a cortical vision prosthesis , 1999, Vision Research.

[45]  W. Inhoffen,et al.  In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescein angiography , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[46]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[47]  Håkan Johansson,et al.  Modern Techniques in Neuroscience Research , 1999, Springer Berlin Heidelberg.

[48]  T. Sejnowski,et al.  Representation of Color Stimuli in Awake Macaque Primary Visual Cortex , 2003, Neuron.

[49]  Thomas Schanze,et al.  Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[50]  J D Victor,et al.  How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. , 1981, The Journal of physiology.

[51]  Reinhard Eckhorn,et al.  Rigorous and extended application of information theory to the afferent visual system of the cat , 2004, Biological Cybernetics.

[52]  B. Hoefflinger,et al.  The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. , 1997, Ophthalmic research.

[53]  P. Latham,et al.  Retinal ganglion cells act largely as independent encoders , 2001, Nature.

[54]  Vision Research , 1961, Nature.

[55]  David J. Warren,et al.  Cortical implants for the blind , 1996 .

[56]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[57]  R. Eckhorn,et al.  Responses of cat retinal ganglion cells to the random motion of a spot stimulus , 1981, Vision Research.

[58]  O. Grüsser,et al.  Signal transmission through degenerating synapses in the lateral geniculate body of the cat. , 1974, Brain research.

[59]  U. Leonards,et al.  Simulation of artificial vision: I. Eccentric reading of isolated words, and perceptual learning , 2003, Vision Research.

[60]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[61]  Neal S Peachey,et al.  Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs. , 2002, Journal of rehabilitation research and development.

[62]  R. Eckhorn,et al.  Generation of Gaussian noise with improved quasi-white properties , 2004, Biological Cybernetics.

[63]  R. Eckhorn,et al.  High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey. , 1993, Neuroreport.

[64]  A. B. Bonds,et al.  A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) , 2001, The Journal of physiology.

[65]  Gordon E. Legge,et al.  Psychophysics of reading—XVI. The visual span in normal and low vision , 1997, Vision Research.

[66]  J. Mazziotta,et al.  Brain Mapping: The Methods , 2002 .

[67]  A Grinvald,et al.  In-vivo Optical Imaging of Cortical Architecture and Dynamics , 1999 .

[68]  K. Turano,et al.  Traditional Measures of Mobility Performance and Retinitis Pigmentosa , 1998, Optometry and vision science : official publication of the American Academy of Optometry.

[69]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[70]  Thomas Schanze,et al.  Retino-cortical information transmission achievable with a retina implant. , 2005, Bio Systems.

[71]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[72]  N Drasdo,et al.  Non-linear projection of the retinal image in a wide-angle schematic eye. , 1974, The British journal of ophthalmology.

[73]  A L Humphrey,et al.  Strobe rearing prevents the convergence of inputs with different response timings onto area 17 simple cells. , 1998, Journal of neurophysiology.

[74]  Victor A. F. Lamme,et al.  Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. , 1999, Cerebral cortex.

[75]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[76]  J. Wyatt,et al.  REVIEW ■ : Prospects for a Visual Prosthesis , 1997 .

[77]  R. Eckhorn,et al.  Visual resolution with epi-retinal electrical stimulation estimated from activation profiles in cat visual cortex , 2003, Visual Neuroscience.

[78]  N. A. Lazareva,et al.  The contribution of intracortical inhibition to dynamics of orientation tuning in cat striate cortex neurons , 1998, Neuroscience.

[79]  C D Gilbert,et al.  Circuitry, architecture, and functional dynamics of visual cortex. , 1993, Cerebral cortex.

[80]  R. Eckmiller Learning retina implants with epiretinal contacts. , 1997, Ophthalmic research.

[81]  Lawrence K. Cormack,et al.  An Introduction to the Visual System: References , 1996 .

[82]  D. Whitteridge,et al.  Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[83]  Joseph F. Rizzo,et al.  Ocular implants for the blind , 1996 .

[84]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[85]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[86]  A. Y. Chow,et al.  Subretinal semiconductor microphotodiode array. , 1998, Ophthalmic surgery and lasers.