Building neural network-based behaviour systems for emotion-based pet robots

Designing robots for home entertainment has become an important application of intelligent autonomous robot. Yet, robot design takes considerable amount of time, and the short life cycle of toy-type robots with fixed prototypes and repetitive behaviours is in fact disadvantageous. Therefore, it is important to develop a framework of robot configuration so that the user can always change the characteristics of his pet robot easily. In this paper, we present a user-centred interactive framework that employs a neural network-based approach to construct behaviour primitives and behaviour arbitrators for robots. For evaluation, we use the proposed framework to construct emotion-based pet robots. Experimental results show the efficiency of the proposed approach.

[1]  Masahiro Fujita,et al.  An ethological and emotional basis for human-robot interaction , 2003, Robotics Auton. Syst..

[2]  P. Petta,et al.  Emotions in Humans and Artifacts , 2003 .

[3]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[4]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[5]  Manuela M. Veloso Entertainment robotics , 2002, CACM.

[6]  Nathalie Japkowicz,et al.  The class imbalance problem: A systematic study , 2002, Intell. Data Anal..

[7]  Jun Morimoto,et al.  Learning from demonstration and adaptation of biped locomotion , 2004, Robotics Auton. Syst..

[8]  Wei-Po Lee,et al.  Evolving Complex Robot Behaviors , 1999, Inf. Sci..

[9]  William Rowan,et al.  The Study of Instinct , 1953 .

[10]  Yang Wang,et al.  Cost-sensitive boosting for classification of imbalanced data , 2007, Pattern Recognit..

[11]  Sebastian Thrun,et al.  Toward a Framework for Human-Robot Interaction , 2004, Hum. Comput. Interact..

[12]  Tatsuzo Ishida,et al.  Mechanical system of a small biped entertainment robot , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[13]  Kevin Warwick,et al.  Control and experimentation of a personal robot tracking system , 2006, Int. J. Model. Identif. Control..

[14]  Michael A. Arbib,et al.  Who Needs Emotions? - The brain meets the robot , 2004, Who Needs Emotions?.

[15]  Joseph E LeDoux The emotional brain , 1996 .

[16]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[17]  Sujal M. Shah,et al.  A hardware digital fuzzy inference engine using standard integrated circuits , 1994 .

[18]  Masahiro Fujita,et al.  On activating human communications with pet-type robot AIBO , 2004, Proceedings of the IEEE.

[19]  Joanna Bryson,et al.  Skill Acquisition Through Program-Level Imitation in a Real-Time Domain , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Edward Grant,et al.  Maze exploration behaviors using an integrated evolutionary robotics environment , 2004, Robotics Auton. Syst..

[21]  Tetsuo Ono,et al.  Development and evaluation of an interactive humanoid robot "Robovie" , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[22]  Seung-Ik Lee,et al.  Observational emergence in evolutionary fuzzy robotics , 2008, Int. J. Model. Identif. Control..

[23]  A. Damasio Descartes’ Error. Emotion, Reason and the Human Brain. New York (Grosset/Putnam) 1994. , 1994 .

[24]  Magdalena D. Bugajska,et al.  Building a Multimodal Human-Robot Interface , 2001, IEEE Intell. Syst..

[25]  Rolf Pfeifer,et al.  Understanding intelligence , 2020, Inequality by Design.

[26]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.