Multi-Objective Particle Swarm Optimizers: An Experimental Comparison

Particle Swarm Optimization (PSO) has received increasing attention in the optimization research community since its first appearance in the mid-1990s. Regarding multi-objective optimization, a considerable number of algorithms based on Multi-Objective Particle Swarm Optimizers (MOPSOs) can be found in the specialized literature. Unfortunately, no experimental comparisons have been made in order to clarify which MOPSO version shows the best performance. In this paper, we use a benchmark composed of three well-known problem families (ZDT, DTLZ, and WFG) with the aim of analyzing the search capabilities of six representative state-of-the-art MOPSOs, namely, NSPSO, SigmaMOPSO, OMOPSO, AMOPSO, MOPSOpd, and CLMOPSO. We additionally propose a new MOPSO algorithm, called SMPSO, characterized by including a velocity constraint mechanism, obtaining promising results where the rest perform inadequately.

[1]  Francisco Luna,et al.  jMetal: a Java Framework for Developing Multi-Objective Optimization Metaheuristics , 2006 .

[2]  A. Tamhane,et al.  Multiple Comparison Procedures , 2009 .

[3]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[4]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[5]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[6]  A. Tamhane,et al.  Multiple Comparison Procedures , 1989 .

[7]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[8]  Enrique Alba,et al.  The jMetal framework for multi-objective optimization: Design and architecture , 2010, IEEE Congress on Evolutionary Computation.

[9]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[10]  Ponnuthurai Nagaratnam Suganthan,et al.  Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems: Research Articles , 2006 .

[11]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[12]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[13]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[14]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[15]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[16]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[17]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[18]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[19]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems , 2006, Int. J. Intell. Syst..

[20]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[23]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[24]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[25]  Richard C. Chapman,et al.  Application of Particle Swarm to Multiobjective Optimization , 1999 .

[26]  Riccardo Poli,et al.  Genetic and Evolutionary Computation – GECCO 2004 , 2004, Lecture Notes in Computer Science.

[27]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[28]  Lakhmi C. Jain,et al.  Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.