Deep multi-view learning methods: A review

[1]  Zidong Wang,et al.  A Dynamic Neighborhood-Based Switching Particle Swarm Optimization Algorithm , 2020, IEEE Transactions on Cybernetics.

[2]  Yifan Xia,et al.  Deep Learning in Sheet Metal Bending With a Novel Theory-Guided Deep Neural Network , 2021, IEEE/CAA Journal of Automatica Sinica.

[3]  Fei-Yue Wang,et al.  KM4: Visual reasoning via Knowledge Embedding Memory Model with Mutual Modulation , 2021, Inf. Fusion.

[4]  Gongfa Li,et al.  Crowd emotion evaluation based on fuzzy inference of arousal and valence , 2021, Neurocomputing.

[5]  Junyu Dong,et al.  Cascade Regression-Based Face Frontalization for Dynamic Facial Expression Analysis , 2021, Cognitive Computation.

[6]  Xiaohui Liu,et al.  An optimally weighted user- and item-based collaborative filtering approach to predicting baseline data for Friedreich's Ataxia patients , 2021, Neurocomputing.

[7]  Jiangshe Zhang,et al.  DRCNN: Dynamic Routing Convolutional Neural Network for Multi-View 3D Object Recognition , 2020, IEEE Transactions on Image Processing.

[8]  K. Deepak,et al.  Deep Multi-view Representation Learning for Video Anomaly Detection Using Spatiotemporal Autoencoders , 2020, Circuits, Systems, and Signal Processing.

[9]  Fuad E. Alsaadi,et al.  Deep-reinforcement-learning-based images segmentation for quantitative analysis of gold immunochromatographic strip , 2020, Neurocomputing.

[10]  Xiaohui Liu,et al.  An N-State Markovian Jumping Particle Swarm Optimization Algorithm , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[11]  Yuan Yuan,et al.  A Novel Sigmoid-Function-Based Adaptive Weighted Particle Swarm Optimizer , 2019, IEEE Transactions on Cybernetics.

[12]  Yue Ming,et al.  Deep learning for monocular depth estimation: A review , 2021, Neurocomputing.

[13]  Shihui Ying,et al.  Parameter Transfer Deep Neural Network for Single-Modal B-Mode Ultrasound-Based Computer-Aided Diagnosis , 2020, Cogn. Comput..

[14]  Lu Zhang,et al.  Multi-view face recognition using deep neural networks , 2020, Future Gener. Comput. Syst..

[15]  Wei Zheng,et al.  Spectral representation learning for one-step spectral rotation clustering , 2020, Neurocomputing.

[16]  Wei Zheng,et al.  Spectral rotation for deep one-step clustering , 2020, Pattern Recognit..

[17]  Zhen Zhao,et al.  Automated diagnosis of bone metastasis based on multi-view bone scans using attention-augmented deep neural networks , 2020, Medical Image Anal..

[18]  Brett Stevens,et al.  Scene perception guided crowd anomaly detection , 2020, Neurocomputing.

[19]  Aboozar Taherkhani,et al.  Classifying Imbalanced Multi-modal Sensor Data for Human Activity Recognition in a Smart Home using Deep Learning , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[20]  Cuntai Guan,et al.  A Multi-view CNN with Novel Variance Layer for Motor Imagery Brain Computer Interface , 2020, 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).

[21]  Yangdong Ye,et al.  Joint specific and correlated information exploration for multi-view action clustering , 2020, Inf. Sci..

[22]  Alexander Hauptmann,et al.  Forward and Backward Multimodal NMT for Improved Monolingual and Multilingual Cross-Modal Retrieval , 2020, ICMR.

[23]  Fei Xue,et al.  Learning Multi-View Camera Relocalization With Graph Neural Networks , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Hao Zheng,et al.  Recognition of EEG Signal Motor Imagery Intention Based on Deep Multi-View Feature Learning , 2020, Sensors.

[25]  Zhaopeng Cui,et al.  Deep Facial Non-Rigid Multi-View Stereo , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Kaveh Hassani,et al.  Contrastive Multi-View Representation Learning on Graphs , 2020, ICML.

[27]  Hui Yu,et al.  CMIB: Unsupervised Image Object Categorization in Multiple Visual Contexts , 2020, IEEE Transactions on Industrial Informatics.

[28]  Qiong Liu,et al.  MV-GNN: Multi-View Graph Neural Network for Compression Artifacts Reduction , 2020, IEEE Transactions on Image Processing.

[29]  Xiao Wang,et al.  One2Multi Graph Autoencoder for Multi-view Graph Clustering , 2020, WWW.

[30]  Jianping Yin,et al.  Multi-View Spectral Clustering with Optimal Neighborhood Laplacian Matrix , 2020, AAAI.

[31]  Qianqian Wang,et al.  Cross-Modal Subspace Clustering via Deep Canonical Correlation Analysis , 2020, AAAI.

[32]  Jun Shi,et al.  BI-Modal Ultrasound Breast Cancer Diagnosis Via Multi-View Deep Neural Network SVM , 2020, 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI).

[33]  Hui Yu,et al.  Synergetic information bottleneck for joint multi-view and ensemble clustering , 2020, Inf. Fusion.

[34]  Kalyan Sunkavalli,et al.  Deep 3D Capture: Geometry and Reflectance From Sparse Multi-View Images , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Zong-Yi Wang,et al.  Automatic “Ground Truth” Annotation and Industrial Workpiece Dataset Generation for Deep Learning , 2020, Int. J. Autom. Comput..

[36]  Yangdong Ye,et al.  Dynamic auto-weighted multi-view co-clustering , 2020, Pattern Recognit..

[37]  Rong Wang,et al.  Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding , 2020, Inf. Fusion.

[38]  Zeynep Akata,et al.  Learning Robust Representations via Multi-View Information Bottleneck , 2020, ICLR.

[39]  Zenglin Xu,et al.  Auto-weighted multi-view clustering via deep matrix decomposition , 2020, Pattern Recognit..

[40]  Qiang Xu,et al.  DeepFuse: An IMU-Aware Network for Real-Time 3D Human Pose Estimation from Multi-View Image , 2019, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[41]  Qi Zhu,et al.  Discriminative margin-sensitive autoencoder for collective multi-view disease analysis , 2019, Neural Networks.

[42]  Xiangliang Zhang,et al.  Multi-View Multiple Clusterings using Deep Matrix Factorization , 2019, AAAI.

[43]  Yingyu Liang,et al.  Learning Relationships between Text, Audio, and Video via Deep Canonical Correlation for Multimodal Language Analysis , 2019, AAAI.

[44]  Mohamed Nadif,et al.  Spectral Clustering via Ensemble Deep Autoencoder Learning (SC-EDAE) , 2019, Pattern Recognit..

[45]  Wenqi Fan,et al.  Deep Adversarial Canonical Correlation Analysis , 2020, SDM.

[46]  Yangdong Ye,et al.  Heterogeneous Dual-Task Clustering with Visual-Textual Information , 2020, SDM.

[47]  Weizhong Yan,et al.  Detecting Gas Turbine Combustor Anomalies Using Semi-supervised Anomaly Detection with Deep Representation Learning , 2019, Cognitive Computation.

[48]  Balasubramanian Raman,et al.  Representation learning using step-based deep multi-modal autoencoders , 2019, Pattern Recognit..

[49]  Chao Zhang,et al.  Deep Joint-Semantics Reconstructing Hashing for Large-Scale Unsupervised Cross-Modal Retrieval , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[50]  Jaesik Choi,et al.  Markov Information Bottleneck to Improve Information Flow in Stochastic Neural Networks , 2019, Entropy.

[51]  Qi Xuan,et al.  Multiview Generative Adversarial Network and Its Application in Pearl Classification , 2019, IEEE Transactions on Industrial Electronics.

[52]  Ming Yang,et al.  A Survey of Multi-View Representation Learning , 2019, IEEE Transactions on Knowledge and Data Engineering.

[53]  Fei-Yue Wang,et al.  Accurate and robust eye center localization via fully convolutional networks , 2019, IEEE/CAA Journal of Automatica Sinica.

[54]  Xiaomeng Xin,et al.  Deep Self-Paced Learning for Semi-Supervised Person Re-Identification Using Multi-View Self-Paced Clustering , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[55]  Kee-Eung Kim,et al.  An Improved Particle Filter With a Novel Hybrid Proposal Distribution for Quantitative Analysis of Gold Immunochromatographic Strips , 2019, IEEE Transactions on Nanotechnology.

[56]  Takafumi Kanamori,et al.  Spectral Embedded Deep Clustering , 2019, Entropy.

[57]  Xianglong Liu,et al.  Graph Convolutional Network Hashing for Cross-Modal Retrieval , 2019, IJCAI.

[58]  Vasant Honavar,et al.  MEGAN: A Generative Adversarial Network for Multi-View Network Embedding , 2019, IJCAI.

[59]  Qinmu Peng,et al.  Equally-Guided Discriminative Hashing for Cross-modal Retrieval , 2019, IJCAI.

[60]  Jiancheng Lv,et al.  Multi-view Spectral Clustering Network , 2019, IJCAI.

[61]  Zidong Wang,et al.  A Novel Particle Swarm Optimization Approach for Patient Clustering From Emergency Departments , 2019, IEEE Transactions on Evolutionary Computation.

[62]  Mianxiong Dong,et al.  MultiSpectralNet: Spectral Clustering Using Deep Neural Network for Multi-View Data , 2019, IEEE Transactions on Computational Social Systems.

[63]  Jie Wei,et al.  M3Net: A multi-model, multi-size, and multi-view deep neural network for brain magnetic resonance image segmentation , 2019, Pattern Recognit..

[64]  Rosalind W. Picard,et al.  Multimodal Ambulatory Sleep Detection Using LSTM Recurrent Neural Networks , 2019, IEEE Journal of Biomedical and Health Informatics.

[65]  Huazhu Fu,et al.  AE2-Nets: Autoencoder in Autoencoder Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[66]  Dezhong Peng,et al.  Deep Supervised Cross-Modal Retrieval , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Wenzhong Guo,et al.  Deep Multimodal Representation Learning: A Survey , 2019, IEEE Access.

[68]  Junping Du,et al.  Deep low-rank subspace ensemble for multi-view clustering , 2019, Inf. Sci..

[69]  Wei Liu,et al.  Deep Spectral Clustering Using Dual Autoencoder Network , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Hui Yu,et al.  Shared-Private Information Bottleneck Method for Cross-Modal Clustering , 2019, IEEE Access.

[71]  Chao Li,et al.  Coupled CycleGAN: Unsupervised Hashing Network for Cross-Modal Retrieval , 2019, AAAI.

[72]  Dezhong Peng,et al.  Adversarial correlated autoencoder for unsupervised multi-view representation learning , 2019, Knowl. Based Syst..

[73]  Joshua E. Blumenstock,et al.  Multi-GCN: Graph Convolutional Networks for Multi-View Networks, with Applications to Global Poverty , 2019, AAAI.

[74]  Vaibhav Rajan,et al.  Deep collective matrix factorization for augmented multi-view learning , 2018, Machine Learning.

[75]  Andrew Markham,et al.  Robust Attentional Aggregation of Deep Feature Sets for Multi-view 3D Reconstruction , 2018, International Journal of Computer Vision.

[76]  Ling Shao,et al.  Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval , 2018, IEEE Transactions on Image Processing.

[77]  Louis-Philippe Morency,et al.  Multimodal Machine Learning: A Survey and Taxonomy , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Huda Khayrallah,et al.  Deep Generalized Canonical Correlation Analysis , 2017, RepL4NLP@ACL.

[79]  Jiayu Zhou,et al.  Deep Multi-view Information Bottleneck , 2019, SDM.

[80]  Kebin Jia,et al.  A Multi-View Deep Learning Framework for EEG Seizure Detection , 2019, IEEE Journal of Biomedical and Health Informatics.

[81]  Nan Zhang,et al.  Multimodal correlation deep belief networks for multi-view classification , 2018, Applied Intelligence.

[82]  Yi Yu,et al.  Audio-Visual Embedding for Cross-Modal Music Video Retrieval through Supervised Deep CCA , 2018, 2018 IEEE International Symposium on Multimedia (ISM).

[83]  Kun Zhang,et al.  Multi-View CNN Feature Aggregation with ELM Auto-Encoder for 3D Shape Recognition , 2018, Cognitive Computation.

[84]  Dapeng Tao,et al.  Deep Multi-View Feature Learning for Person Re-Identification , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[85]  Junzhou Huang,et al.  Adaptive Sampling Towards Fast Graph Representation Learning , 2018, NeurIPS.

[86]  Shiliang Sun,et al.  Multi-view Learning and Deep Learning for Microscopic Neuroblastoma Pathology Image Diagnosis , 2018, PRICAI.

[87]  J. Alison Noble,et al.  &OHgr;‐Net (Omega‐Net): Fully automatic, multi‐view cardiac MR detection, orientation, and segmentation with deep neural networks☆ , 2018, Medical Image Anal..

[88]  Wenjun Zeng,et al.  Skeleton-Indexed Deep Multi-Modal Feature Learning for High Performance Human Action Recognition , 2018, 2018 IEEE International Conference on Multimedia and Expo (ICME).

[89]  Jungong Han,et al.  Unsupervised Deep Hashing via Binary Latent Factor Models for Large-scale Cross-modal Retrieval , 2018, IJCAI.

[90]  Cai Xu,et al.  Deep Multi-View Concept Learning , 2018, IJCAI.

[91]  Yu Tian,et al.  CR-GAN: Learning Complete Representations for Multi-view Generation , 2018, IJCAI.

[92]  Yue Gao,et al.  GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[93]  Junsong Yuan,et al.  Multi-view Harmonized Bilinear Network for 3D Object Recognition , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[94]  Jure Leskovec,et al.  Embedding Logical Queries on Knowledge Graphs , 2018, NeurIPS.

[95]  Xinbo Gao,et al.  Triplet-Based Deep Hashing Network for Cross-Modal Retrieval , 2018, IEEE Transactions on Image Processing.

[96]  Wei Liu,et al.  Self-Supervised Adversarial Hashing Networks for Cross-Modal Retrieval , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[97]  Ling Shao,et al.  Vehicle Re-Identification by Deep Hidden Multi-View Inference , 2018, IEEE Transactions on Image Processing.

[98]  Gang Wang,et al.  Multimodal Recurrent Neural Networks With Information Transfer Layers for Indoor Scene Labeling , 2018, IEEE Transactions on Multimedia.

[99]  Fenglong Ma,et al.  A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning , 2018, 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI).

[100]  Shifei Ding,et al.  An overview on Restricted Boltzmann Machines , 2018, Neurocomputing.

[101]  Ronen Basri,et al.  SpectralNet: Spectral Clustering using Deep Neural Networks , 2018, ICLR.

[102]  Cristian Canton-Ferrer,et al.  Eye In-painting with Exemplar Generative Adversarial Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[103]  Chen Fang,et al.  Visual to Sound: Generating Natural Sound for Videos in the Wild , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[104]  Bir Bhanu,et al.  MVPNets: Multi-viewing Path Deep Learning Neural Networks for Magnification Invariant Diagnosis in Breast Cancer. , 2018 .

[105]  Xuelong Li,et al.  Auto-Weighted Multi-View Learning for Image Clustering and Semi-Supervised Classification. , 2018, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[106]  Guixia Kang,et al.  3D multi-view convolutional neural networks for lung nodule classification , 2017, PloS one.

[107]  Graham W. Taylor,et al.  Deep Multimodal Learning: A Survey on Recent Advances and Trends , 2017, IEEE Signal Processing Magazine.

[108]  Shiliang Sun,et al.  Multi-view learning overview: Recent progress and new challenges , 2017, Inf. Fusion.

[109]  Miki Haseyama,et al.  Aesthetic quality assessment of images via Supervised Locality Preserving CCA , 2017, 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE).

[110]  Raquel Urtasun,et al.  Deep Spectral Clustering Learning , 2017, ICML.

[111]  Yangdong Ye,et al.  Multi-task Clustering of Human Actions by Sharing Information , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[112]  Hao Chen,et al.  Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection , 2017, IEEE Transactions on Biomedical Engineering.

[113]  Mohan S. Kankanhalli,et al.  Benchmarking a Multimodal and Multiview and Interactive Dataset for Human Action Recognition , 2017, IEEE Transactions on Cybernetics.

[114]  Feiping Nie,et al.  Revisiting Co-Saliency Detection: A Novel Approach Based on Two-Stage Multi-View Spectral Rotation Co-clustering , 2017, IEEE Transactions on Image Processing.

[115]  Xiaoming Liu,et al.  Disentangled Representation Learning GAN for Pose-Invariant Face Recognition , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[116]  Ran He,et al.  Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[117]  Victor S. Lempitsky,et al.  Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[118]  Mohamed R. Amer,et al.  Deep Multimodal Fusion: A Hybrid Approach , 2017, International Journal of Computer Vision.

[119]  Alexander A. Alemi,et al.  Deep Variational Information Bottleneck , 2017, ICLR.

[120]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[121]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[122]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[123]  Yun Fu,et al.  Multi-View Clustering via Deep Matrix Factorization , 2017, AAAI.

[124]  Stanley S. Ipson,et al.  A multimodal deep learning framework using local feature representations for face recognition , 2017, Machine Vision and Applications.

[125]  Adrian Hilton,et al.  Deep Convolutional Networks for Marker-less Human Pose Estimation from Multiple Views , 2016, CVMP 2016.

[126]  Tong Zhang,et al.  A Deep Neural Network-Driven Feature Learning Method for Multi-view Facial Expression Recognition , 2016, IEEE Transactions on Multimedia.

[127]  Ito Wasito,et al.  Multimodal Deep Boltzmann Machines for feature selection on gene expression data , 2016, 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS).

[128]  Fang Zhao,et al.  Robust Face Recognition with Deep Multi-View Representation Learning , 2016, ACM Multimedia.

[129]  Xuelong Li,et al.  Parameter-Free Auto-Weighted Multiple Graph Learning: A Framework for Multiview Clustering and Semi-Supervised Classification , 2016, IJCAI.

[130]  Yangdong Ye,et al.  Unsupervised Human Action Categorization with Consensus Information Bottleneck Method , 2016, IJCAI.

[131]  Andrew Zisserman,et al.  Convolutional Two-Stream Network Fusion for Video Action Recognition , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[132]  Yong Man Ro,et al.  Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[133]  Shuicheng Yan,et al.  Convex Sparse Spectral Clustering: Single-View to Multi-View. , 2016, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[134]  Daoqiang Zhang,et al.  Multi-view dimensionality reduction via canonical random correlation analysis , 2015, Frontiers of Computer Science.

[135]  Jun Yu,et al.  Multi-view ensemble manifold regularization for 3D object recognition , 2015, Inf. Sci..

[136]  Jianping Fan,et al.  Multi-View Concept Learning for Data Representation , 2015, IEEE Transactions on Knowledge and Data Engineering.

[137]  Min Xu,et al.  Learning Multi-view Deep Features for Small Object Retrieval in Surveillance Scenarios , 2015, ACM Multimedia.

[138]  Meng Wang,et al.  Multimodal Deep Autoencoder for Human Pose Recovery , 2015, IEEE Transactions on Image Processing.

[139]  Nathan Srebro,et al.  Stochastic optimization for deep CCA via nonlinear orthogonal iterations , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[140]  Yangdong Ye,et al.  Unsupervised video categorization based on multivariate information bottleneck method , 2015, Knowl. Based Syst..

[141]  Jeff A. Bilmes,et al.  On Deep Multi-View Representation Learning , 2015, ICML.

[142]  Krystian Mikolajczyk,et al.  Deep correlation for matching images and text , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[143]  Yuting Su,et al.  Multiple/Single-View Human Action Recognition via Part-Induced Multitask Structural Learning , 2015, IEEE Transactions on Cybernetics.

[144]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[145]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[146]  Naftali Tishby,et al.  Deep learning and the information bottleneck principle , 2015, 2015 IEEE Information Theory Workshop (ITW).

[147]  Li-Jia Li,et al.  Multi-view Face Detection Using Deep Convolutional Neural Networks , 2015, ICMR.

[148]  Feiping Nie,et al.  Large-Scale Multi-View Spectral Clustering via Bipartite Graph , 2015, AAAI.

[149]  Wei Xu,et al.  Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN) , 2014, ICLR.

[150]  Marinka Zitnik,et al.  Data Fusion by Matrix Factorization , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[151]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[152]  Ruifan Li,et al.  Cross-modal Retrieval with Correspondence Autoencoder , 2014, ACM Multimedia.

[153]  Ying Wu,et al.  Cross-View Action Modeling, Learning, and Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[154]  Jeff A. Bilmes,et al.  Deep Canonical Correlation Analysis , 2013, ICML.

[155]  Shiliang Sun,et al.  A survey of multi-view machine learning , 2013, Neural Computing and Applications.

[156]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[157]  Jiawei Han,et al.  Multi-View Clustering via Joint Nonnegative Matrix Factorization , 2013, SDM.

[158]  Nitish Srivastava,et al.  Multimodal learning with deep Boltzmann machines , 2012, J. Mach. Learn. Res..

[159]  Yung-Yu Chuang,et al.  Affinity aggregation for spectral clustering , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[160]  Ying Wu,et al.  Mining actionlet ensemble for action recognition with depth cameras , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[161]  Vinodkrishnan Kulathumani,et al.  Real-time multi-view human action recognition using a wireless camera network , 2011, 2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras.

[162]  Thomas S. Huang,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation. , 2011, IEEE transactions on pattern analysis and machine intelligence.

[163]  Geoffrey E. Hinton,et al.  Generating Text with Recurrent Neural Networks , 2011, ICML.

[164]  Juhan Nam,et al.  Multimodal Deep Learning , 2011, ICML.

[165]  Feiping Nie,et al.  Heterogeneous image feature integration via multi-modal spectral clustering , 2011, CVPR 2011.

[166]  Jieping Ye,et al.  Canonical Correlation Analysis for Multilabel Classification: A Least-Squares Formulation, Extensions, and Analysis , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[167]  Jieping Ye,et al.  A scalable two-stage approach for a class of dimensionality reduction techniques , 2010, KDD.

[168]  Fei-Fei Li,et al.  Connecting modalities: Semi-supervised segmentation and annotation of images using unaligned text corpora , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[169]  Chris H. Q. Ding,et al.  Convex and Semi-Nonnegative Matrix Factorizations , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[170]  Massih-Reza Amini,et al.  Learning from Multiple Partially Observed Views - an Application to Multilingual Text Categorization , 2009, NIPS.

[171]  Sham M. Kakade,et al.  Multi-view clustering via canonical correlation analysis , 2009, ICML '09.

[172]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[173]  Rémi Ronfard,et al.  Action Recognition from Arbitrary Views using 3D Exemplars , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[174]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[175]  Tae-Kyun Kim,et al.  Tensor Canonical Correlation Analysis for Action Classification , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[176]  Songcan Chen,et al.  Locality preserving CCA with applications to data visualization and pose estimation , 2007, Image Vis. Comput..

[177]  Yan Gao,et al.  The Multi-view Information Bottleneck Clustering , 2007, DASFAA.

[178]  Shotaro Akaho,et al.  A kernel method for canonical correlation analysis , 2006, ArXiv.

[179]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[180]  Andrew Zisserman,et al.  A Visual Vocabulary for Flower Classification , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[181]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[182]  Carla E. Brodley,et al.  Correlation Clustering for Learning Mixtures of Canonical Correlation Models , 2005, SDM.

[183]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[184]  Gal Chechik,et al.  Information Bottleneck for Gaussian Variables , 2003, J. Mach. Learn. Res..

[185]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[186]  William W. Hsieh,et al.  Nonlinear canonical correlation analysis by neural networks , 2000, Neural Networks.

[187]  Colin Fyfe,et al.  Kernel and Nonlinear Canonical Correlation Analysis , 2000, IJCNN.

[188]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[189]  Suzanna Becker,et al.  Mutual information maximization: models of cortical self-organization. , 1996, Network.

[190]  Geoffrey E. Hinton,et al.  Self-organizing neural network that discovers surfaces in random-dot stereograms , 1992, Nature.

[191]  J. Kettenring,et al.  Canonical Analysis of Several Sets of Variables , 2022 .