Soft Robots Manufacturing: A Review

The growing interest in soft robots comes from the new possibilities offered by these systems to cope with problems that cannot be addressed by robots built from rigid bodies. Many innovative solutions have been developed in recent years to design soft components and systems. They all demonstrate how soft robotics development is closely dependent on advanced manufacturing processes. This review aims at giving an insight on the current state of the art in soft robotics manufacturing. It first puts in light the elementary components that can be used to develop soft actuators, whether they use fluids, shape memory alloys, electro-active polymers or stimuli-responsive materials. Other types of elementary components, such as soft smart structures or soft-rigid hybrid systems, are then presented. The second part of this review deals with the manufacturing methods used to build complete soft structures. It includes molding, with possibly reinforcements and inclusions, additive manufacturing, thin-film manufacturing, shape deposition manufacturing, and bonding. The paper conclusions sums up the pros and cons of the presented techniques, and open to developing topics such as design methods for soft robotics and sensing technologies.

[1]  Charles Kim,et al.  Design of soft robotic actuators using fluid-filled fiber-reinforced elastomeric enclosures in parallel combinations , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Daniel M. Vogt,et al.  Batch Fabrication of Customizable Silicone‐Textile Composite Capacitive Strain Sensors for Human Motion Tracking , 2017 .

[3]  A RobertsonMatthew,et al.  Soft Pneumatic Actuator Fascicles for High Force and Reliability , 2017 .

[4]  Hiroshi Ishii,et al.  Printflatables: Printing Human-Scale, Functional and Dynamic Inflatable Objects , 2017, CHI.

[5]  Sung-Hoon Ahn,et al.  Review of manufacturing processes for soft biomimetic robots , 2009 .

[6]  N. Tsujiuchi,et al.  Development of a low pressure driven pneumatic actuator and its application to a robot hand , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[7]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[8]  Metin Sitti,et al.  Shape Memory Polymer-Based Flexure Stiffness Control in a Miniature Flapping-Wing Robot , 2012, IEEE Transactions on Robotics.

[9]  Alin Albu-Schaffer,et al.  Soft robotics , 2008, IEEE Robotics Autom. Mag..

[10]  Robert J. Wood,et al.  Modeling of Soft Fiber-Reinforced Bending Actuators , 2015, IEEE Transactions on Robotics.

[11]  Z. Suo Theory of dielectric elastomers , 2010 .

[12]  David E. Hardt,et al.  Centrifugal Casting of Microfluidic Components With PDMS , 2013 .

[13]  Jong-Hyun Ahn,et al.  Load‐Controlled Roll Transfer of Oxide Transistors for Stretchable Electronics , 2013 .

[14]  Sridhar Kota,et al.  Model based control of fiber reinforced elastofluidic enclosures , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[15]  George M. Whitesides,et al.  Towards a soft pneumatic glove for hand rehabilitation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Kevin C. Galloway,et al.  Interaction Forces of Soft Fiber Reinforced Bending Actuators , 2017, IEEE/ASME Transactions on Mechatronics.

[17]  Nicholas X. Fang,et al.  Projection micro-stereolithography using digital micro-mirror dynamic mask , 2005 .

[18]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[19]  PaikJamie,et al.  Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement , 2016 .

[20]  Yonghua Chen,et al.  Novel Design and Three-Dimensional Printing of Variable Stiffness Robotic Grippers , 2016 .

[21]  T. Nanayakkara,et al.  Soft Robotics Technologies to Address Shortcomings in Today ’ s Minimally Invasive Surgery : The STIFF-FLOP Approach , 2014 .

[22]  Shorya Awtar,et al.  A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial Beams , 2013 .

[23]  F. Al-Bender,et al.  Modeling and bonding-free fabrication of flexible fluidic microactuators with a bending motion , 2013 .

[24]  MazzolaiBarbara,et al.  Sculpting Soft Machines , 2016 .

[25]  Silvestro Micera,et al.  Soft robot for gait rehabilitation of spinalized rodents , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[27]  J. A. Lewis Direct Ink Writing of 3D Functional Materials , 2006 .

[28]  Kam K. Leang,et al.  A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control , 2017 .

[29]  Larry L. Howell,et al.  Lamina Emergent Mechanisms and Their Basic Elements , 2010 .

[30]  Kaspar Althoefer,et al.  A Novel Concept for Safe, Stiffness-Controllable Robot Links. , 2017, Soft robotics.

[31]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[32]  Dana Kulic,et al.  Control of soft pneumatic finger-like actuators for affective motion generation , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[33]  Gursel Alici,et al.  A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires , 2016, Bioinspiration & biomimetics.

[34]  Kai Tang,et al.  A jumping robot using soft pneumatic actuator , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[35]  Carmel Majidi,et al.  Soft-matter composites with electrically tunable elastic rigidity , 2013 .

[36]  Robert J. Wood,et al.  Fabrication of stretchable composites with anisotropic electrical conductivity for compliant pressure transducers , 2016, 2016 IEEE SENSORS.

[37]  Yi Sun,et al.  Characterization of silicone rubber based soft pneumatic actuators , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Christian Duriez,et al.  Control of elastic soft robots based on real-time finite element method , 2013, 2013 IEEE International Conference on Robotics and Automation.

[39]  G. K. Ananthasuresh,et al.  Design of Distributed Compliant Mechanisms , 2003 .

[40]  Oliver Brock,et al.  A novel type of compliant and underactuated robotic hand for dexterous grasping , 2016, Int. J. Robotics Res..

[41]  Hisham M. C. M. Anver,et al.  3D printing of a thin-wall soft and monolithic gripper using fused filament fabrication , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[42]  LipsonHod,et al.  Dynamic Simulation of Soft Multimaterial 3D-Printed Objects , 2014 .

[43]  Kiju Lee,et al.  3D-printed semi-soft mechanisms inspired by origami twisted tower , 2017, 2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).

[44]  Daniela Rus,et al.  Pouch Motors: Printable/inflatable soft actuators for robotics , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[45]  Ryan B. Wicker,et al.  3D Printing for the Rapid Prototyping of Structural Electronics , 2014, IEEE Access.

[46]  M SpinksGeoffrey,et al.  3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers , 2016 .

[47]  Katia Bertoldi,et al.  Amplifying the response of soft actuators by harnessing snap-through instabilities , 2015, Proceedings of the National Academy of Sciences.

[48]  Wendelin J. Stark,et al.  Design, Performance and Reinforcement of Bearing-Free Soft Silicone Combustion-Driven Pumps , 2014 .

[49]  R. Shepherd,et al.  Scalable manufacturing of high force wearable soft actuators , 2015 .

[50]  Jamie Paik,et al.  Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices , 2016, Scientific Reports.

[51]  John R. Tumbleston,et al.  Continuous liquid interface production of 3D objects , 2015, Science.

[52]  Pierre Renaud,et al.  Toward unibody robotic structures with integrated functions using multimaterial additive manufacturing: Case study of an MRI-compatible interventional device , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[53]  Isaac L. Delimont Compliant Joints Suitable for Use as Surrogate Folds , 2015 .

[54]  YapHong Kai,et al.  High-Force Soft Printable Pneumatics for Soft Robotic Applications , 2016 .

[55]  M. Frisk,et al.  Biomimetic soft multifunctional miniature aquabots. , 2008, Small.

[56]  Jonathan B. Hopkins,et al.  Synthesis and Analysis of Soft Parallel Robots Comprised of Active Constraints , 2015 .

[57]  Aaron D. Mazzeo,et al.  Rotary Actuators Based on Pneumatically Driven Elastomeric Structures , 2016, Advanced materials.

[58]  Jennifer C. Case,et al.  Multi-mode strain and curvature sensors for soft robotic applications , 2017 .

[59]  Nikolaus Correll,et al.  Soft Autonomous Materials - Using Active Elasticity and Embedded Distributed Computation , 2010, ISER.

[60]  Kam K. Leang,et al.  3D-printed ionic polymer-metal composite soft crawling robot , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[61]  Danish Iqbal,et al.  Photo-Responsive Shape-Memory and Shape-Changing Liquid-Crystal Polymer Networks , 2013, Materials.

[62]  G. Whitesides,et al.  Buckling Pneumatic Linear Actuators Inspired by Muscle , 2016 .

[63]  M Calisti,et al.  Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot , 2015, Bioinspiration & biomimetics.

[64]  Wendelin J. Stark,et al.  3D printed lost-wax casted soft silicone monoblocks enable heart-inspired pumping by internal combustion , 2014 .

[65]  Yang Yang,et al.  Passive Particle Jamming and Its Stiffening of Soft Robotic Grippers , 2017, IEEE Transactions on Robotics.

[66]  Tian Qiu,et al.  Auxetic metamaterial simplifies soft robot design , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[67]  F. Carpi,et al.  Ultrafast all-polymer electrically tuneable silicone lenses , 2016 .

[68]  Glaucio H. Paulino,et al.  Programmable Deployment of Tensegrity Structures by Stimulus-Responsive Polymers , 2017, Scientific Reports.

[69]  Cecilia Laschi,et al.  Underwater soft-bodied pulsed-jet thrusters: Actuator modeling and performance profiling , 2016, Int. J. Robotics Res..

[70]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[71]  Robert J. Wood,et al.  A Resilient, Untethered Soft Robot , 2014 .

[72]  I. Lundström,et al.  Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. , 2000, Science.

[73]  R. Brent Gillespie,et al.  Origami Structured Compliant Actuator (OSCA) , 2015, 2015 IEEE International Conference on Rehabilitation Robotics (ICORR).

[74]  K. Bertoldi,et al.  A Bioinspired Soft Actuated Material , 2014, Advanced materials.

[75]  C. Majidi Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[76]  Daniel M. Aukes,et al.  Self-folding origami: shape memory composites activated by uniform heating , 2014 .

[77]  L. Paez,et al.  Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement , 2016 .

[78]  Juan Cristóbal Zagal,et al.  Design, fabrication and control of a multi-material-multi-actuator soft robot inspired by burrowing worms , 2016, 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[79]  Sung-Hoon Ahn,et al.  Deployable Soft Composite Structures , 2016, Scientific Reports.

[80]  J. Kruth,et al.  Benchmarking of different SLS/SLM processes as Rapid Manufacturing techniques , 2005 .

[81]  Masayuki Inaba,et al.  Metamorphic robot made of low melting point alloy , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[82]  Arianna Menciassi,et al.  Design and development of a soft robotic gripper for manipulation in minimally invasive surgery: a proof of concept , 2015 .

[83]  Carter S. Haines,et al.  Artificial Muscles from Fishing Line and Sewing Thread , 2014, Science.

[84]  Fumiya Iida,et al.  Mechanics and energetics in tool manufacture and use: a synthetic approach , 2014, Journal of The Royal Society Interface.

[85]  Minjie Wang,et al.  Vacuum casting replication of micro-riblets on shark skin for drag-reducing applications , 2012 .

[86]  Nikolaos G. Tsagarakis,et al.  Improved modelling and assessment of pneumatic muscle actuators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[87]  M. Dickey,et al.  Self-folding of polymer sheets using local light absorption , 2012 .

[88]  Nikolaus Correll,et al.  A soft pneumatic actuator that can sense grasp and touch , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[89]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[90]  Cagdas D. Onal,et al.  Soft robot actuators using energy-efficient valves controlled by electropermanent magnets , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[91]  Yi Sun,et al.  Sensor and actuator integrated low-profile robotic origami , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[92]  Darrin C. Bentivegna,et al.  Mechanical implementation of a variable-stiffness actuator for a softly strummed ukulele , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[93]  Robert J. Wood,et al.  Soft robotic glove for combined assistance and at-home rehabilitation , 2015, Robotics Auton. Syst..

[94]  Ming-Chuan Leu,et al.  Progress in Additive Manufacturing and Rapid Prototyping , 1998 .

[95]  Sanlin S. Robinson,et al.  Highly stretchable electroluminescent skin for optical signaling and tactile sensing , 2016, Science.

[96]  Amir Firouzeh,et al.  Soft pneumatic actuator with adjustable stiffness layers for Multi-DoF Actuation , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[97]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[98]  Karl Iagnemma,et al.  Design of a tubular snake-like manipulator with stiffening capability by layer jamming , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[99]  Patrick T. Underhill,et al.  Spin coating of thin and ultrathin polymer films , 1998 .

[100]  Dana Kulic,et al.  Modelling and experimental analysis of a novel design for soft pneumatic artificial muscles , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[101]  Ioannis M. Rekleitis,et al.  The Avatar Project , 2008, IEEE Robotics & Automation Magazine.

[102]  Dario Floreano,et al.  Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[103]  Robert J. Wood,et al.  A 3D-printed, functionally graded soft robot powered by combustion , 2015, Science.

[104]  Elisabetta A. Matsumoto,et al.  Biomimetic 4D printing. , 2016, Nature materials.

[105]  B Mazzolai,et al.  Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions , 2012, Bioinspiration & biomimetics.

[106]  Robert J. Wood,et al.  Microrobot Design Using Fiber Reinforced Composites , 2008 .

[107]  Jamie Paik,et al.  Design and Computational Modeling of a Modular, Compliant Robotic Assembly for Human Lumbar Unit and Spinal Cord Assistance , 2017, Scientific Reports.

[108]  K. Tanie,et al.  Biomimetic soft actuator: design, modeling, control, and applications , 2005, IEEE/ASME Transactions on Mechatronics.

[109]  Arianna Menciassi,et al.  A Soft Modular Manipulator for Minimally Invasive Surgery: Design and Characterization of a Single Module , 2016, IEEE Transactions on Robotics.

[110]  Bram Vanderborght,et al.  A Pneumatic Artificial Muscle Manufactured Out of Self-Healing Polymers That Can Repair Macroscopic Damages , 2018, IEEE Robotics and Automation Letters.

[111]  Manuel G. Catalano,et al.  Variable impedance actuators: A review , 2013, Robotics Auton. Syst..

[112]  Jean-Pierre Kruth,et al.  Material incress manufacturing by rapid prototyping techniques , 1991 .

[113]  Bingjie Zhu,et al.  A multi-responsive water-driven actuator with instant and powerful performance for versatile applications , 2015, Scientific Reports.

[114]  Christian Duriez,et al.  Optimization-Based Inverse Model of Soft Robots With Contact Handling , 2017, IEEE Robotics and Automation Letters.

[115]  Maxwell Herman,et al.  The Soft Robotics Toolkit: Strategies for Overcoming Obstacles to the Wide Dissemination of Soft-Robotic Hardware , 2017, IEEE Robotics & Automation Magazine.

[116]  Skylar Tibbits,et al.  4D Printing: Multi‐Material Shape Change , 2014 .

[117]  Andrew D. Marchese Design, fabrication, and control of soft robots with fluidic elastomer actuators , 2015 .

[118]  Robert J. Wood,et al.  Fluid-driven origami-inspired artificial muscles , 2017, Proceedings of the National Academy of Sciences.

[119]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[120]  Cagdas D. Onal,et al.  Design and control of a soft and continuously deformable 2D robotic manipulation system , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[121]  G. Kovacs Arm Wrestling Robot Driven by Dielectric Elastomer Actuators , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[122]  R. J. Wood,et al.  An Origami-Inspired Approach to Worm Robots , 2013, IEEE/ASME Transactions on Mechatronics.

[123]  Daniela Rus,et al.  Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot , 2013, Bioinspiration & biomimetics.

[124]  Weiliang Xu,et al.  Design and Fabrication of a Soft Actuator for a Swallowing Robot , 2013, RiTA.

[125]  F. Krebs Pad printing as a film forming technique for polymer solar cells , 2009 .

[126]  G. Whitesides,et al.  Elastomeric Origami: Programmable Paper‐Elastomer Composites as Pneumatic Actuators , 2012 .

[127]  Marc D. Killpack,et al.  Simultaneous position and stiffness control for an inflatable soft robot , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[128]  Améziane Aoussat,et al.  Design of a Novel Long-Range Inflatable Robotic Arm: Manufacturing and Numerical Evaluation of the Joints and Actuation , 2013 .

[129]  Robert J. Wood,et al.  Mechanically programmable bend radius for fiber-reinforced soft actuators , 2013, 2013 16th International Conference on Advanced Robotics (ICAR).

[130]  Yong-Lae Park,et al.  Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors , 2012, IEEE Sensors Journal.

[131]  Shuichi Wakimoto,et al.  Micro pneumatic curling actuator - Nematode actuator - , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[132]  Yasutaka Nishioka,et al.  Development of a pneumatic soft actuator with pleated inflatable structures , 2017, Adv. Robotics.

[133]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[134]  Oliver Brock,et al.  A compliant hand based on a novel pneumatic actuator , 2013, 2013 IEEE International Conference on Robotics and Automation.

[135]  Cagdas D. Onal,et al.  Bioinspired design and fabrication principles of reliable fluidic soft actuation modules , 2015, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[136]  Christopher B. Williams,et al.  A procedure for creating actuated joints via embedding shape memory alloys in PolyJet 3D printing , 2015 .

[137]  Robert J. Wood,et al.  Soft Robotic Grippers for Biological Sampling on Deep Reefs , 2016, Soft robotics.

[138]  Leonid Ionov,et al.  Hydrogel-based actuators: possibilities and limitations , 2014 .

[139]  Robert J. Wood,et al.  Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms , 2011, 2011 IEEE International Conference on Robotics and Automation.

[140]  J. Ruesink,et al.  Population genetics of the Manila clam (Ruditapes philippinarum) introduced in North America and Europe , 2017, Scientific Reports.

[141]  MajidiCarmel,et al.  Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[142]  Matteo Cianchetti,et al.  Soft Robotics: New Perspectives for Robot Bodyware and Control , 2014, Front. Bioeng. Biotechnol..

[143]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[144]  Fumiya Iida,et al.  Large-Payload Climbing in Complex Vertical Environments Using Thermoplastic Adhesive Bonds , 2013, IEEE Transactions on Robotics.

[145]  Michael J. Schöning,et al.  Light-Stimulated Hydrogels with Incorporated Graphene Oxide as Actuator Material for Flow Control in Microfluidic Applications , 2017 .

[146]  Jonathan Rossiter,et al.  Euglenoid-Inspired Giant Shape Change for Highly Deformable Soft Robots , 2017, IEEE Robotics and Automation Letters.

[147]  Hod Lipson,et al.  Automatic Design and Manufacture of Soft Robots , 2012, IEEE Transactions on Robotics.

[148]  CianchettiMatteo,et al.  Soft Robotics Technologies to Address Shortcomings in Today's Minimally Invasive Surgery: The STIFF-FLOP Approach , 2014 .

[149]  Lei Jiang,et al.  Single-material solvent-sensitive actuator from poly(ionic liquid) inverse opals based on gradient dewetting. , 2016, Chemical communications.

[150]  B. Jensen,et al.  Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms , 2011 .

[151]  Wai Yee Yeong,et al.  Additively manufactured multi-material free-form structure with printed electronics , 2018 .

[152]  Robert J. Wood,et al.  An Additive Millimeter‐Scale Fabrication Method for Soft Biocompatible Actuators and Sensors , 2017, Advanced Materials Technologies.

[153]  C. D. Onal,et al.  A modular approach to soft robots , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[154]  Jamie Paik,et al.  Soft Pneumatic Actuator Fascicles for High Force and Reliability , 2017, Soft robotics.

[155]  Marc D. Killpack,et al.  Control of a pneumatically actuated, fully inflatable, fabric-based, humanoid robot , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[156]  Bram Vanderborght,et al.  Development of a self-healing soft pneumatic actuator: a first concept. , 2015, Bioinspiration & biomimetics.

[157]  W. D Brouwer,et al.  Vacuum injection moulding for large structural applications , 2003 .

[158]  Stephen A. Morin,et al.  Using explosions to power a soft robot. , 2013, Angewandte Chemie.

[159]  Sridhar Kota,et al.  Kinematics of a Generalized Class of Pneumatic Artificial Muscles , 2015 .

[160]  Hod Lipson,et al.  Soft material for soft actuators , 2017, Nature Communications.

[161]  Matteo Cianchetti,et al.  Soft robotics: Technologies and systems pushing the boundaries of robot abilities , 2016, Science Robotics.

[162]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[163]  CianchettiMatteo,et al.  A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping , 2015 .

[164]  A.M. Dollar,et al.  A robust compliant grasper via shape deposition manufacturing , 2006, IEEE/ASME Transactions on Mechatronics.

[165]  Xiaoning Li,et al.  Design and characteristic study of a pneumatically actuated earthworm-like soft robot , 2015, 2015 International Conference on Fluid Power and Mechatronics (FPM).

[166]  Bram Vanderborght,et al.  The Pneumatic Biped “Lucy” Actuated with Pleated Pneumatic Artificial Muscles , 2005, Auton. Robots.