Sampling-Based Bottleneck Pathfinding with Applications to Fréchet Matching

We describe a general probabilistic framework to address a variety of Frechet-distance optimization problems. Specifically, we are interested in finding minimal bottleneck-paths in $d$-dimensional Euclidean space between given start and goal points, namely paths that minimize the maximal value over a continuous cost map. We present an efficient and simple sampling-based framework for this problem, which is inspired by, and draws ideas from, techniques for robot motion planning. We extend the framework to handle not only standard bottleneck pathfinding, but also the more demanding case, where the path needs to be monotone in all dimensions. Finally, we provide experimental results of the framework on several types of problems.

[1]  G. Blelloch,et al.  Efficient algorithms for path problems in weighted graphs , 2008 .

[2]  Dan Halperin,et al.  On the hardness of unlabeled multi-robot motion planning , 2015, Robotics: Science and Systems.

[3]  Paul G. Spirakis,et al.  Strong NP-Hardness of Moving Many Discs , 1984, Inf. Process. Lett..

[4]  Panagiotis Tsiotras,et al.  Use of relaxation methods in sampling-based algorithms for optimal motion planning , 2013, 2013 IEEE International Conference on Robotics and Automation.

[5]  Kevin Buchin,et al.  Fréchet Distance of Surfaces: Some Simple Hard Cases , 2010, ESA.

[6]  Carola Wenk,et al.  Simple Curve Embedding , 2013, ArXiv.

[7]  Micha Sharir,et al.  Algorithmic motion planning , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[8]  Dan Halperin,et al.  New perspective on sampling-based motion planning via random geometric graphs , 2016, Robotics: Science and Systems.

[9]  Erin W. Chambers,et al.  Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time , 2010, Comput. Geom..

[10]  M. Buchin,et al.  Fine-Grained Analysis of Problems on Curves , 2016 .

[11]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[12]  Wolfgang Mulzer,et al.  Computing the Fréchet Distance with a Retractable Leash , 2016, Discret. Comput. Geom..

[13]  Binhai Zhu,et al.  Protein Structure-structure Alignment with Discrete FrÉchet Distance , 2008, J. Bioinform. Comput. Biol..

[14]  Micha Sharir,et al.  A near-quadratic algorithm for planning the motion of a polygon in a polygonal environment , 1996, Discret. Comput. Geom..

[15]  Mikkel Thorup,et al.  Bottleneck Paths and Trees and Deterministic Graphical Games , 2016, STACS.

[16]  Ora Schueler-Furman,et al.  Rapid Sampling of Molecular Motions with Prior Information Constraints , 2009, PLoS Comput. Biol..

[17]  Mark de Berg,et al.  Efficient Multi-Robot Motion Planning for Unlabeled Discs in Simple Polygons , 2013, IEEE Transactions on Automation Science and Engineering.

[18]  Marco Pavone,et al.  Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions , 2013, ISRR.

[19]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[20]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[21]  Karl Berntorp,et al.  Sampling-based algorithms for optimal motion planning using closed-loop prediction , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[22]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[23]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[24]  Vijay Kumar,et al.  Concurrent assignment and planning of trajectories for large teams of interchangeable robots , 2013, 2013 IEEE International Conference on Robotics and Automation.

[25]  Sariel Har-Peled,et al.  The fréchet distance revisited and extended , 2012, TALG.

[26]  Kurt Mehlhorn,et al.  Classroom Examples of Robustness Problems in Geometric Computations , 2004, ESA.

[27]  Dan Halperin,et al.  Efficient high-quality motion planning by fast all-pairs r-nearest-neighbors , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[28]  Karl Bringmann,et al.  Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[29]  B. Bollobás,et al.  Percolation, Connectivity, Coverage and Colouring of Random Geometric Graphs , 2008 .

[30]  Luc Devroye,et al.  Connectivity threshold of Bluetooth graphs , 2014, Random Struct. Algorithms.

[31]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[32]  Matthew J. Katz,et al.  On the Chain Pair Simplification Problem , 2015, WADS.

[33]  Kevin Buchin,et al.  Computing the Fréchet distance between simple polygons , 2008, Comput. Geom..

[34]  Chiranjib Bhattacharyya,et al.  Fréchet Distance Based Approach for Searching Online Handwritten Documents , 2007 .

[35]  Zhangcan Huang,et al.  Algorithm of On-Line Handwriting Signature Verification Based on Discrete Fréchet Distance , 2008, ISICA.

[36]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[37]  Atlas F. Cook,et al.  Geodesic Fréchet distance inside a simple polygon , 2008, TALG.

[38]  H. Poincaré,et al.  Percolation ? , 1982 .

[39]  Günter Rote,et al.  On the Fréchet distance of a set of curves , 2004, CCCG.

[40]  Wouter Meulemans Map Matching with Simplicity Constraints , 2013, ArXiv.

[41]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[42]  Dan Halperin,et al.  Asymptotically-optimal Motion Planning using lower bounds on cost , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[43]  Wolfgang Mulzer,et al.  Computing the Fréchet Distance with a Retractable Leash , 2013, ESA.

[44]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Jeremy G. Siek,et al.  The Boost Graph Library - User Guide and Reference Manual , 2001, C++ in-depth series.

[46]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[47]  Mark de Berg,et al.  Trekking in the Alps Without Freezing or Getting Tired , 1993, Algorithmica.

[48]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[49]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[50]  Dan Halperin,et al.  Motion Planning for Unlabeled Discs with Optimality Guarantees , 2015, Robotics: Science and Systems.

[51]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[52]  Wolfgang Mulzer,et al.  Approximability of the discrete Fréchet distance , 2015, J. Comput. Geom..

[53]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[54]  Wolfgang Mulzer,et al.  Four Soviets Walk the Dog - with an Application to Alt's Conjecture , 2012, SODA.