An overview of computational challenges in online advertising

Online advertising is a large and rapidly growing business. The major players in the space, namely advertisers, publishers, and ad exchanges, are developing increasingly sophisticated systems, methods and tools to facilitate, manage, optimize and report on the performance of online advertising marketplaces and campaigns. Developing solutions that are both mathematically sound and practical draws on techniques from a variety of disciplines including machine learning, stochastic optimal control, information retrieval, data mining, natural language processing, and econometrics. In this paper, we provide an overview of the online advertising space, and identify, frame, and describe solution approaches to some of the major computational challenges in the space. We describe specific examples from industry applications, including ad inventory auctions, bidding and allocation strategies for ad inventory, inventory targeting, banner and landing page optimization, and performance estimation.

[1]  Noam Nisan,et al.  Doubleclick Ad Exchange Auction , 2012, ArXiv.

[2]  Ashish Goel,et al.  Truthful auctions for pricing search keywords , 2006, EC '06.

[3]  Andreas Ramos,et al.  Search Engine Marketing , 2008 .

[4]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[5]  Jon Feldman,et al.  Online Stochastic Packing Applied to Display Ad Allocation , 2010, ESA.

[6]  Vibhanshu Abhishek,et al.  Optimal bidding in multi-item multi-slot sponsored search auctions , 2012, EC '12.

[7]  S. Muthukrishnan,et al.  Theory of Sponsored Search Auctions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[8]  Aranyak Mehta,et al.  Online bipartite matching with unknown distributions , 2011, STOC '11.

[9]  田口 玄一,et al.  System of experimental design : engineering methods to optimize quality and minimize costs , 1987 .

[10]  Filip Radlinski,et al.  Optimizing relevance and revenue in ad search: a query substitution approach , 2008, SIGIR '08.

[11]  Rayid Ghani,et al.  Text mining for product attribute extraction , 2006, SKDD.

[12]  Yifan Chen,et al.  Advertising keyword suggestion based on concept hierarchy , 2008, WSDM '08.

[13]  Kevin Bartz,et al.  Natural language generation for sponsored-search advertisements , 2008, EC '08.

[14]  Tony White,et al.  On How Ants Put Advertisements on the Web , 2010, IEA/AIE.

[15]  Keith D. Kastella,et al.  Foundations and Applications of Sensor Management , 2010 .

[16]  S. Muthukrishnan,et al.  Ad Exchanges: Research Issues , 2009, WINE.

[17]  Deeparnab Chakrabarty,et al.  Budget constrained bidding in keyword auctions and online knapsack problems , 2008, WINE.

[18]  Gerhard J. Woeginger,et al.  On-Line Scheduling of Jobs with Fixed Start and End Times , 1994, Theor. Comput. Sci..

[19]  Chia-Hui Chang,et al.  Sentiment-oriented contextual advertising , 2009, Knowledge and Information Systems.

[20]  Nicolò Cesa-Bianchi,et al.  Finite-Time Regret Bounds for the Multiarmed Bandit Problem , 1998, ICML.

[21]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[22]  L. Fahrmeir,et al.  Multivariate statistical modelling based on generalized linear models , 1994 .

[23]  T István Nagy,et al.  Person attribute extraction from the textual parts of web pages , 2012 .

[24]  Charles Duhigg,et al.  How Companies Learn Your Secrets , 2012 .

[25]  S. Muthukrishnan,et al.  AdX: a model for ad exchanges , 2009, SECO.

[26]  Joseph G. Pigeon,et al.  Statistics for Experimenters: Design, Innovation and Discovery , 2006, Technometrics.

[27]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[28]  Zizhuo Wang,et al.  A Dynamic Near-Optimal Algorithm for Online Linear Programming , 2009, Oper. Res..

[29]  Matthew Richardson,et al.  Predicting clicks: estimating the click-through rate for new ads , 2007, WWW '07.

[30]  Joaquin Quiñonero Candela,et al.  Web-Scale Bayesian Click-Through rate Prediction for Sponsored Search Advertising in Microsoft's Bing Search Engine , 2010, ICML.

[31]  Vassilis Plachouras,et al.  Online learning from click data for sponsored search , 2008, WWW.

[32]  Junling Hu,et al.  Bootstrapped Named Entity Recognition for Product Attribute Extraction , 2011, EMNLP.

[33]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[34]  H. Robbins Some aspects of the sequential design of experiments , 1952 .

[35]  Lihong Li,et al.  An Empirical Evaluation of Thompson Sampling , 2011, NIPS.

[36]  Thomas P. Hayes,et al.  The adwords problem: online keyword matching with budgeted bidders under random permutations , 2009, EC '09.

[37]  Nader Mohamed,et al.  Statistical techniques for online personalized advertising: a survey , 2012, SAC '12.

[38]  Eric T. Peterson,et al.  Web Site Measurement Hacks , 2005 .

[39]  Mike Moran,et al.  Search Engine Marketing, Inc.: Driving Search Traffic to Your Company's Web Site , 2005 .

[40]  T. L. Lai Andherbertrobbins Asymptotically Efficient Adaptive Allocation Rules , 2022 .

[41]  L. Fahrmeir,et al.  On kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression , 1991 .

[42]  Pramodita Sharma 2012 , 2013, Les 25 ans de l’OMC: Une rétrospective en photos.

[43]  Csaba Szepesvári,et al.  Exploration-exploitation tradeoff using variance estimates in multi-armed bandits , 2009, Theor. Comput. Sci..

[44]  Andrei Z. Broder,et al.  A semantic approach to contextual advertising , 2007, SIGIR.

[45]  Lisa Ditlefsen Search engine marketing , 2008 .

[46]  Howard R. Moskowitz,et al.  Selling Blue Elephants: How to make great products that people want BEFORE they even know they want them , 2007 .

[47]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[48]  Nikhil R. Devanur,et al.  Near optimal online algorithms and fast approximation algorithms for resource allocation problems , 2011, EC '11.

[49]  Lenhart K. Schubert,et al.  Class-Driven Attribute Extraction , 2008, COLING.

[50]  Eric P. Xing,et al.  Structured Databases of Named Entities from Bayesian Nonparametrics , 2011, ULNLP@EMNLP.

[51]  Leslie Pack Kaelbling,et al.  Algorithms for multi-armed bandit problems , 2014, ArXiv.

[52]  Jun Wang,et al.  Sequential selection of correlated ads by POMDPs , 2012, CIKM.

[53]  Vijay Murthi,et al.  Logistic Regression and Collaborative Filtering for Sponsored Search Term Recommendation , 2006 .

[54]  Ariel Fuxman,et al.  Using the wisdom of the crowds for keyword generation , 2008, WWW.

[55]  Aranyak Mehta,et al.  Online budgeted matching in random input models with applications to Adwords , 2008, SODA '08.

[56]  A. Bahrami,et al.  Design of experiments using the Taguchi approach: Synthesis of ZnO nanoparticles , 2012 .

[57]  Frederick Reiss,et al.  An Algebraic Approach to Rule-Based Information Extraction , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[58]  Amin Saberi,et al.  Online stochastic matching: online actions based on offline statistics , 2010, SODA '11.

[59]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[60]  Samir Khuller,et al.  Online allocation of display advertisements subject to advanced sales contracts , 2009, KDD Workshop on Data Mining and Audience Intelligence for Advertising.

[61]  J. I The Design of Experiments , 1936, Nature.

[62]  Peter Auer,et al.  The Nonstochastic Multiarmed Bandit Problem , 2002, SIAM J. Comput..

[63]  Erick Cantú-Paz,et al.  Personalized click prediction in sponsored search , 2010, WSDM '10.

[64]  Aranyak Mehta,et al.  AdWords and generalized on-line matching , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[65]  Deeparnab Chakrabarty,et al.  Budget constrained bidding in keyword auctions and online knapsack problems , 2008, WWW.

[66]  Jon Feldman,et al.  Yield optimization of display advertising with ad exchange , 2011, EC '11.

[67]  Nicole Immorlica,et al.  A combinatorial allocation mechanism with penalties for banner advertising , 2008, WWW.

[68]  Vahab S. Mirrokni,et al.  Bid optimization for broad match ad auctions , 2009, WWW '09.

[69]  Mohammad Mahdian,et al.  Online bipartite matching with random arrivals: an approach based on strongly factor-revealing LPs , 2011, STOC '11.

[70]  Svetlana Kiritchenko,et al.  Keyword Optimization in Sponsored Search via Feature Selection , 2008, FSDM.

[71]  Wei Li,et al.  Bid landscape forecasting in online ad exchange marketplace , 2011, KDD.

[72]  D. Sculley,et al.  Predicting bounce rates in sponsored search advertisements , 2009, KDD.

[73]  Jun Wang,et al.  Internet Advertising: An Interplay among Advertisers, Online Publishers, Ad Exchanges and Web Users , 2012, ArXiv.

[74]  Ron Kohavi,et al.  Responsible editor: R. Bayardo. , 2022 .

[75]  Daniel Dajun Zeng,et al.  Co-evolution-based mechanism design for sponsored search advertising , 2012, Electron. Commer. Res. Appl..

[76]  Rajeev Motwani,et al.  Keyword Generation for Search Engine Advertising , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[77]  Hai-Tao Zheng,et al.  An ontology-based approach to Chinese semantic advertising , 2012, Inf. Sci..

[78]  Joseph Naor,et al.  Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue , 2007, ESA.

[79]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[80]  Berthier A. Ribeiro-Neto,et al.  Impedance coupling in content-targeted advertising , 2005, SIGIR '05.

[81]  Juong-Sik Lee,et al.  Impact of ROI on Bidding and Revenue in Sponsored Search Advertisement Auctions , 2006 .

[82]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[83]  Eric S. Rosengren,et al.  Board of Governors of the Federal Reserve System , 2002 .

[84]  Marius Pasca,et al.  Latent Variable Models of Concept-Attribute Attachment , 2009, ACL/IJCNLP.

[85]  Doug Downey,et al.  Unsupervised named-entity extraction from the Web: An experimental study , 2005, Artif. Intell..

[86]  Weiguo Fan,et al.  Learning to advertise , 2006, SIGIR.

[87]  Aranyak Mehta,et al.  Online Stochastic Matching: Beating 1-1/e , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[88]  P. Abbeel,et al.  Kalman filtering , 2020, IEEE Control Systems Magazine.

[89]  Shipra Agrawal,et al.  Analysis of Thompson Sampling for the Multi-armed Bandit Problem , 2011, COLT.

[90]  Joshua Goodman,et al.  Finding advertising keywords on web pages , 2006, WWW '06.

[91]  James Shaw,et al.  Ordering Among Premodifiers , 1999, ACL.

[92]  Jon Feldman,et al.  Budget optimization in search-based advertising auctions , 2006, EC '07.

[93]  Przemyslaw Kazienko,et al.  AdROSA - Adaptive personalization of web advertising , 2007, Inf. Sci..

[94]  Fernando Pereira,et al.  Lightly-Supervised Attribute Extraction , 2007 .

[95]  Deepayan Chakrabarti,et al.  Multi-armed bandit problems with dependent arms , 2007, ICML '07.

[96]  Mikhail Kapralov,et al.  Improved Bounds for Online Stochastic Matching , 2010, ESA.

[97]  Hema Raghavan,et al.  Improving ad relevance in sponsored search , 2010, WSDM '10.

[98]  Nello Cristianini,et al.  Learning Semantic Similarity , 2002, NIPS.

[99]  T. IstvánNagy Person Attribute Extraction from the Textual Parts of Web Pages , 2010, CLEF.

[100]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[101]  Sergei Vassilvitskii,et al.  Bidding for Representative Allocations for Display Advertising , 2009, WINE.

[102]  David W. Embley,et al.  Ontology-based extraction and structuring of information from data-rich unstructured documents , 1998, CIKM '98.

[103]  Nikhil R. Devanur,et al.  Online matching with concave returns , 2012, STOC '12.

[104]  Daphne Freeder,et al.  Web Metrics: Proven Methods for Measuring Web Site Success , 2003 .

[105]  Bo Chen,et al.  An integrated discriminative probabilistic approach to information extraction , 2009, CIKM.

[106]  Steffen Staab,et al.  Bootstrapping an Ontology-Based Information Extraction System , 2003, Intelligent Exploration of the Web.

[107]  Demosthenis Teneketzis,et al.  Multi-Armed Bandit Problems , 2008 .

[108]  Sergei Vassilvitskii,et al.  Optimal online assignment with forecasts , 2010, EC '10.