A METHOD FOR BIAS REDUCTION IN TIME DOMAIN LEAST SQUARES PARAMETER ESTIMATION

This paper examines the issue of bias that arises when applying least squares identification to continuous-time models of resonant systems. We propose a simple method to reduce the impact of this bias by pre-processing the data. This new method requires no knowledge of the noise colouring. An example is presented that shows the superior performance of the proposed method over that of a traditional method.

[1]  Wei Xing Zheng,et al.  On a least-squares-based algorithm for identification of stochastic linear systems , 1998, IEEE Trans. Signal Process..

[2]  Marion Gilson,et al.  Developments for the matlab contsid toolbox , 2003 .

[3]  Brett Ninness,et al.  Orthonormal basis functions for modelling continuous-time systems , 1999, Signal Process..

[4]  Wei Xing Zheng,et al.  Comments on "On a least-squares-based algorithm for identification of stochastic linear systems" , 1999, IEEE Trans. Signal Process..

[5]  W. Zheng A revisit to least-squares parameter estimation of ARMAX systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[6]  T. Söderström,et al.  Bias correction in least-squares identification , 1982 .

[7]  Marion Gilson,et al.  Latest developments for the Matlab CONTSID toolbox , 2006 .

[8]  T. Söderström,et al.  Study of a bias-free least squares parameter estimator , 1995 .

[9]  Michel Verhaegen,et al.  Continuous-time identification of SISO systems using Laguerre functions , 1999, IEEE Trans. Signal Process..

[10]  K. Wada,et al.  On-line modified least-squares parameter estimation of linear discrete dynamic systems , 1977 .

[11]  Hugues Garnier,et al.  Continuous-time model identification from sampled data: Implementation issues and performance evaluation , 2003 .

[12]  A new bias-compensating least-squares method for identification of stochastic linear systems in presence of coloured noise , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[13]  S. O. Reza Moheimani Experimental verification of the corrected transfer function of a piezoelectric laminate beam , 2000, IEEE Trans. Control. Syst. Technol..

[14]  D. Sakrison The use of stochastic approximation to solve the system identification problem , 1967 .

[15]  Masayoshi Tomizuka,et al.  A new bias-compensating LS method for continuous system identification in the presence of coloured noise , 1992 .

[16]  Vladimír Strejc,et al.  Least squares parameter estimation , 1979, Autom..

[17]  K. Furuta,et al.  On the identification of time-invariant discrete processes , 1970 .