An Improved Approximation Scheme for Computing Arrow-Debreu Prices for the Linear Case
暂无分享,去创建一个
Nikhil R. Devanur | Shang-Hua Teng | Ye Du | Xi Chen | Decheng Dai | S. Teng | V. Vazirani | Xi Chen | Decheng Dai | Ye Du
[1] E. Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .
[2] S. Kakutani. A generalization of Brouwer’s fixed point theorem , 1941 .
[3] K. Arrow,et al. EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .
[4] E. Eisenberg,et al. CONSENSUS OF SUBJECTIVE PROBABILITIES: THE PARI-MUTUEL METHOD, , 1959 .
[5] I. Fisher,et al. Ten economic studies in the tradition of Irving Fisher , 1967 .
[6] Herbert E. Scarf,et al. The Approximation of Fixed Points of a Continuous Mapping , 1967 .
[7] B. Curtis Eaves,et al. Homotopies for computation of fixed points , 1972, Math. Program..
[8] H. Scarf. The computation of equilibrium prices , 1973 .
[9] Francesco Mallegni,et al. The Computation of Economic Equilibria , 1973 .
[10] Léon Walras. Éléments d'économie politique pure, ou, Théorie de la richesse sociale , 1976 .
[11] Christos H. Papadimitriou,et al. Exponential lower bounds for finding Brouwer fixed points , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[12] Christos H. Papadimitriou,et al. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..
[13] R. Maxfield. General equilibrium and the theory of directed graphs , 1997 .
[14] P. Herings,et al. The computation of equilibrium prices , 1998 .
[15] M. Richter,et al. Non-computability of competitive equilibrium , 1999 .
[16] Xiaotie Deng,et al. On the complexity of equilibria , 2002, STOC '02.
[17] Nikhil R. Devanur,et al. Market equilibrium via a primal-dual-type algorithm , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[18] J. Geanakoplos. Nash and Walras equilibrium via Brouwer , 2003 .
[19] Nikhil R. Devanur,et al. An Improved Approximation Scheme for Computing Arrow-Debreu Prices for the Linear Case , 2003, FSTTCS.
[20] Amin Saberi,et al. Approximating Market Equilibria , 2003, RANDOM-APPROX.
[21] Kamal Jain,et al. A Polynomial Time Algorithm for Computing the Arrow-Debreu Market Equilibrium for Linear Utilities , 2004, FOCS.
[22] Rahul Garg,et al. Auction algorithms for market equilibrium , 2004, STOC '04.
[23] Nikhil R. Devanur. The spending constraint model for market equilibrium: algorithmic, existence and uniqueness results , 2004, STOC '04.
[24] Ning Chen,et al. Fisher Equilibrium Price with a Class of Concave Utility Functions , 2004, ESA.
[25] Vijay V. Vazirani,et al. An Auction-Based Market Equilibrium Algorithm for the Separable Gross Substitutability Case , 2004, APPROX-RANDOM.
[26] Kamal Jain,et al. A polynomial time algorithm for computing an Arrow-Debreu market equilibrium for linear utilities , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[27] Sriram V. Pemmaraju,et al. On the polynomial time computation of equilibria for certain exchange economies , 2005, SODA '05.
[28] H. Scarf,et al. How to Compute Equilibrium Prices in 1891 , 2005 .
[29] Bruno Codenotti,et al. Market equilibrium via the excess demand function , 2005, STOC '05.
[30] Vijay V. Vazirani,et al. Market equilibria for homothetic, quasi-concave utilities and economies of scale in production , 2005, SODA '05.
[31] Bruno Codenotti,et al. Market Equilibrium for CES Exchange Economies: Existence, Multiplicity, and Computation , 2005, FSTTCS.
[32] Shang-Hua Teng,et al. Market equilibria with hybrid linear-Leontief utilities , 2006, Theor. Comput. Sci..
[33] Shang-Hua Teng,et al. On the Approximation and Smoothed Complexity of Leontief Market Equilibria , 2006, FAW.
[34] Xiaotie Deng,et al. Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[35] Paul W. Goldberg,et al. Reducibility among equilibrium problems , 2006, STOC '06.
[36] Xiaotie Deng,et al. Sparse Games Are Hard , 2006, WINE.
[37] Xi Chen,et al. Computing Nash Equilibria: Approximation and Smoothed Complexity , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[38] Amin Saberi,et al. Leontief economies encode nonzero sum two-player games , 2006, SODA '06.
[39] Yinyu Ye,et al. Exchange market equilibria with Leontief's utility: Freedom of pricing leads to rationality , 2007, Theor. Comput. Sci..
[40] Nikhil R. Devanur,et al. Market Equilibria in Polynomial Time for Fixed Number of Goods or Agents , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[41] Nikhil R. Devanur,et al. Market equilibrium via a primal--dual algorithm for a convex program , 2008, JACM.
[42] Yinyu Ye,et al. A path to the Arrow–Debreu competitive market equilibrium , 2007, Math. Program..
[43] Shang-Hua Teng,et al. Spending Is Not Easier Than Trading: On the Computational Equivalence of Fisher and Arrow-Debreu Equilibria , 2009, ISAAC.
[44] Tim Roughgarden,et al. Algorithmic Game Theory , 2007 .
[45] Kousha Etessami,et al. On the Complexity of Nash Equilibria and Other Fixed Points , 2010, SIAM J. Comput..
[46] Vijay V. Vazirani. Spending Constraint Utilities with Applications to the Adwords Market , 2010, Math. Oper. Res..