Landmark detection and localization for mobile robot applications: a multisensor approach

This paper describes a landmark detection and localization using an integrated laser-camera sensor. Laser range finder can be used to detect landmarks that are direction invariant in the laser data such as protruding edges in walls, edges of tables, and chairs. When such features are unavailable, the dependant processes will fail to function. However, in many instances, larger number of landmarks can be detected using computer vision. In the proposed method, camera is used to detect landmarks while the location of the landmark is measured by the laser range finder using laser-camera calibration information. Thus, the proposed method exploits the beneficial aspects of each sensor to overcome the disadvantages of the other sensor. While highlighting the drawbacks and limitations of single sensor based methods, an experimental results and important statistics are provided for the verification of the affectiveness sensor fusion method using Extended Kalman Filter (EKF) based simultaneous localization and mapping (SLAM) as an example application.

[1]  Ben J. A. Kröse,et al.  Enhancing appearance-based robot localization using sparse disparity maps , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[2]  Michel Dhome,et al.  Monocular Vision Based SLAM for Mobile Robots , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[3]  Udo Frese Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping , 2006, Auton. Robots.

[4]  Piotr Jasiobedzki,et al.  Photo-realistic 3D model reconstruction , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[5]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Ben J. A. Kröse,et al.  A probabilistic model for appearance-based robot localization , 2001, Image Vis. Comput..

[7]  Ben J. A. Kröse,et al.  Appearance-based concurrent map building and localization using a multi-hypotheses tracker , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[8]  Stergios I. Roumeliotis,et al.  Appearance-based minimalistic metric SLAM , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[9]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[10]  Andrew J. Davison,et al.  Mobile Robot Navigation Using Active Vision , 1998 .

[11]  Favio R. Masson,et al.  Simultaneous localization and map building using natural features and absolute information , 2002, Robotics Auton. Syst..

[12]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[13]  Kyoung Mu Lee,et al.  Visual SLAM with Line and Corner Features , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Pietro Perona,et al.  Visual navigation using a single camera , 1995, Proceedings of IEEE International Conference on Computer Vision.

[15]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[16]  José A. Castellanos,et al.  Multisensor fusion for simultaneous localization and map building , 2001, IEEE Trans. Robotics Autom..

[17]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Horst-Michael Groß,et al.  Omniview-based concurrent map building and localization using adaptive appearance maps , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[19]  David W. Murray,et al.  Simultaneous Localization and Map-Building Using Active Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  J. M. M. Montiel,et al.  Adaptive Scale Robust Segmentation for 2D Laser Scanner , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Ian D. Reid,et al.  Mapping Large Loops with a Single Hand-Held Camera , 2007, Robotics: Science and Systems.

[22]  Parvaneh Saeedi,et al.  Vision-based 3-D trajectory tracking for unknown environments , 2006, IEEE Transactions on Robotics.

[23]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[24]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[25]  Javier Civera,et al.  Unified Inverse Depth Parametrization for Monocular SLAM , 2006, Robotics: Science and Systems.

[26]  Wolfram Burgard,et al.  People Tracking with Mobile Robots Using Sample-Based Joint Probabilistic Data Association Filters , 2003, Int. J. Robotics Res..

[27]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[28]  David W. Murray,et al.  Mobile Robot Localisation Using Active Vision , 1998, ECCV.

[29]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[30]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[31]  G. Dissanayake,et al.  Vision-based SLAM using natural features in indoor environments , 2005, 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[32]  J. M. M. Montiel,et al.  Relocation using laser and vision , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.