A novel elementary construction of matching vectors

Z. Dvir, P. Gopalan, and S. Yekhanin (2010, 2011) [2,3] proposed an elementary construction of bounded family of matching vectors with size k=1m^'+1(m^'n-1)^(^n^-^1^)^/^2 for m^'>=n and (n-1m^') for m^'=n and (nm^') for m^'

[1]  Zeev Dvir,et al.  Matching Vector Codes , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[2]  Daniel A. Spielman,et al.  Nearly-linear size holographic proofs , 1994, STOC '94.

[3]  Madhu Sudan,et al.  Efficient Checking of Polynomials and Proofs and the Hardness of Appoximation Problems , 1995, Lecture Notes in Computer Science.

[4]  Sergey Yekhanin,et al.  Private information retrieval , 2010, CACM.

[5]  Venkatesan Guruswami,et al.  Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy , 2005, IEEE Transactions on Information Theory.

[6]  Ron M. Roth,et al.  Introduction to Coding Theory , 2019, Discrete Mathematics.

[7]  Sergey Yekhanin,et al.  Locally Decodable Codes: A Brief Survey , 2011, IWCC.

[8]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[9]  Sergey Yekhanin Locally Decodable Codes , 2012, Found. Trends Theor. Comput. Sci..

[10]  Yuval Ishai,et al.  Breaking the O(n/sup 1/(2k-1)/) barrier for information-theoretic Private Information Retrieval , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[11]  Klim Efremenko,et al.  3-Query Locally Decodable Codes of Subexponential Length , 2008 .

[12]  Amnon Ta-Shma,et al.  Local List Decoding with a Constant Number of Queries , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[13]  Zeev Dvir,et al.  Locally Decodable Codes with Two Queries and Polynomial Identity Testing for Depth 3 Circuits , 2007, SIAM J. Comput..

[14]  Zeev Dvir,et al.  Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits , 2005, STOC '05.

[15]  David P. Woodruff,et al.  A Geometric Approach to Information-Theoretic Private Information Retrieval , 2005, Computational Complexity Conference.

[16]  Jonathan Katz,et al.  On the efficiency of local decoding procedures for error-correcting codes , 2000, STOC '00.

[17]  Rudolf Lide,et al.  Finite fields , 1983 .