miR-9a Minimizes the Phenotypic Impact of Genomic Diversity by Buffering a Transcription Factor

[1]  Andrew M. K. Brown,et al.  Variable Clonal Repopulation Dynamics Influence Chemotherapy Response in Colorectal Cancer , 2013, Science.

[2]  M. Félix Evolution in developmental phenotype space. , 2012, Current opinion in genetics & development.

[3]  Margaret S. Ebert,et al.  Roles for MicroRNAs in Conferring Robustness to Biological Processes , 2012, Cell.

[4]  J. Mendell,et al.  MicroRNAs in Stress Signaling and Human Disease , 2012, Cell.

[5]  Kevin R. Thornton,et al.  The Drosophila melanogaster Genetic Reference Panel , 2012, Nature.

[6]  A. Bhattacharya,et al.  A Network of Broadly Expressed HLH Genes Regulates Tissue-Specific Cell Fates , 2011, Cell.

[7]  Wen-Ching Chan,et al.  Aberrant hypermethylation of miR-9 genes in gastric cancer , 2011, Epigenetics.

[8]  Grace X. Y. Zheng,et al.  MicroRNAs can generate thresholds in target gene expression , 2011, Nature Genetics.

[9]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[10]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[11]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[12]  Susan Lindquist,et al.  Hsp90 and Environmental Stress Transform the Adaptive Value of Natural Genetic Variation , 2010, Science.

[13]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[14]  J. Gu,et al.  Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma , 2010, Oncogene.

[15]  Tilo Strutz,et al.  Data Fitting and Uncertainty: A practical introduction to weighted least squares and beyond , 2010 .

[16]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[17]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[18]  Tomas W. Fitzgerald,et al.  Origins and functional impact of copy number variation in the human genome , 2010, Nature.

[19]  Peer Bork,et al.  Ancient animal microRNAs and the evolution of tissue identity , 2010, Nature.

[20]  Xabier Agirre,et al.  Epigenetic regulation of microRNA expression in colorectal cancer , 2009, International journal of cancer.

[21]  M. Siegal,et al.  Robustness: mechanisms and consequences. , 2009, Trends in genetics : TIG.

[22]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[23]  Justin J. Cassidy,et al.  A MicroRNA Imparts Robustness against Environmental Fluctuation during Development , 2009, Cell.

[24]  K. Frazer,et al.  Human genetic variation and its contribution to complex traits , 2009, Nature Reviews Genetics.

[25]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[26]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[27]  Ting Wang,et al.  The UCSC Genome Browser Database: update 2009 , 2008, Nucleic Acids Res..

[28]  U. Lehmann,et al.  Epigenetic inactivation of microRNA gene hsa‐mir‐9‐1 in human breast cancer , 2008, The Journal of pathology.

[29]  Ken Kelley,et al.  Methods for the Behavioral, Educational, and Social Sciences: An R package , 2007, Behavior research methods.

[30]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[31]  Ken Kelley,et al.  Confidence Intervals for Standardized Effect Sizes: Theory, Application, and Implementation , 2007 .

[32]  B. Charlesworth,et al.  Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila , 2007, Nature.

[33]  Hugo J. Bellen,et al.  P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster , 2006, Science.

[34]  Yan Li,et al.  MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. , 2006, Genes & development.

[35]  Julius Brennecke,et al.  Denoising feedback loops by thresholding--a new role for microRNAs. , 2006, Genes & development.

[36]  Noam Shomron,et al.  Canalization of development by microRNAs , 2006, Nature Genetics.

[37]  H. Bellen,et al.  Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator , 2006, Development.

[38]  Xin Li,et al.  A microRNA Mediates EGF Receptor Signaling and Promotes Photoreceptor Differentiation in the Drosophila Eye , 2005, Cell.

[39]  Bassem A. Hassan,et al.  From skin to nerve: flies, vertebrates and the first helix , 2005, Cellular and Molecular Life Sciences CMLS.

[40]  Gerald M Rubin,et al.  Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. , 2005, Genes & development.

[41]  Luis M. Escudero,et al.  Charlatan, a Zn-finger transcription factor, establishes a novel level of regulation of the proneural achaete/scute genes of Drosophila , 2005, Development.

[42]  Greg Gibson,et al.  Uncovering cryptic genetic variation , 2004, Nature Reviews Genetics.

[43]  S. Parkhurst,et al.  Senseless acts as a binary switch during sensory organ precursor selection. , 2003, Genes & development.

[44]  G. Wagner,et al.  EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS , 2003 .

[45]  A. Bergman,et al.  Waddington's canalization revisited: Developmental stability and evolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Jeffrey Ross-Ibarra,et al.  Genetic Data Analysis II. Methods for Discrete Population Genentic Data , 2002 .

[47]  H. Bellen,et al.  Senseless, a Zn Finger Transcription Factor, Is Necessary and Sufficient for Sensory Organ Development in Drosophila , 2000, Cell.

[48]  Garth A. Gibson,et al.  Canalization in evolutionary genetics: a stabilizing theory? , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[49]  W. Gelbart,et al.  u-shaped encodes a zinc finger protein that regulates the proneural genes achaete and scute during the formation of bristles in Drosophila. , 1997, Genes & development.

[50]  Wolfgang Reh,et al.  Significance tests and confidence intervals for coefficients of variation , 1996 .

[51]  A. Bang,et al.  HairlessPromotes Stable Commitment to the Sensory Organ Precursor Cell Fate by Negatively Regulating the Activity of theNotchSignaling Pathway , 1995 .

[52]  M. Caudy,et al.  Hairy function as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation. , 1994, Genes & development.

[53]  J. Posakony,et al.  The Drosophila extramacrochaetae protein antagonizes sequence-specific DNA binding by daughterless/achaete-scute protein complexes. , 1991, Development.

[54]  J. Modolell,et al.  Competence to develop sensory organs is temporally and spatially regulated in Drosophila epidermal primordia. , 1990, The EMBO journal.

[55]  J. Modolell,et al.  Excess function Hairy-wing mutations caused by gypsy and copia insertions within structural genes of the achaete-scute locus of Drosophila , 1986, Cell.

[56]  Ricardo Villares,et al.  Molecular genetics of the achaete-scute gene complex of D. melanogaster , 1985, Cell.

[57]  B. Sheldon Studies on the scutellar bristles of Drosophila melanogaster. I. Basic variability, some temperature and culture effects, and responses to short-term selection in the Oregon-RC strain. , 1968, Australian journal of biological sciences.

[58]  J. Rendel Correlation between the Number of Scutellar and Abdominal Bristles in Drosophila Melanogaster. , 1963, Genetics.

[59]  Cedric A. B. Smith,et al.  Introduction to Quantitative Genetics , 1960 .

[60]  J. Rendel,et al.  CANALIZATION OF THE SCUTE PHENOTYPE OF DROSOPHILA , 1959 .

[61]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[62]  J. Salk Clonal evolution in cancer , 2010 .

[63]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[64]  V. Hartenstein,et al.  Drosophila melanogaster , 2005 .

[65]  H. Bellen,et al.  Drosophila Lyra mutations are gain-of-function mutations of senseless. , 2001, Genetics.

[66]  A. Bang,et al.  Hairless promotes stable commitment to the sensory organ precursor cell fate by negatively regulating the activity of the Notch signaling pathway. , 1995, Developmental biology.

[67]  A. G. Frodesen,et al.  Probability and statistics in particle physics , 1979 .

[68]  J. M. Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[69]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .