Computational Complexity of Synchronization under Sparse Regular Constraints

The constrained synchronization problem (CSP) asks for a synchronizing word of a given input automaton contained in a regular set of constraints. It could be viewed as a special case of synchronization of a discrete event system under supervisory control. Here, we study the computational complexity of this problem for the class of sparse regular constraint languages. We give a new characterization of sparse regular sets, which equal the bounded regular sets, and derive a full classification of the computational complexity of CSP for letter-bounded regular constraint languages, which properly contain the strictly bounded regular languages. Then, we introduce strongly self-synchronizing codes and investigate CSP for bounded languages induced by these codes. With our previous result, we deduce a full classification for these languages as well. In both cases, depending on the constraint language, our problem becomes NP-complete or polynomial time solvable.

[1]  Henning Fernau,et al.  Computational Complexity of Synchronization under Regular Constraints , 2019, MFCS.

[2]  Christos G. Cassandras,et al.  Introduction to Discrete Event Systems , 1999, The Kluwer International Series on Discrete Event Dynamic Systems.

[3]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[4]  Ehud Shapiro,et al.  DNA molecule provides a computing machine with both data and fuel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Justin Pearson,et al.  Comma-free codes , 2003 .

[6]  Juris Hartmanis,et al.  An Eassay about Research on Sparse NP Complete Sets , 1980, MFCS.

[7]  Gheorghe Paun,et al.  On the Regularity of Languages Generated by Context-free Evolutionary Grammars , 1999, Discret. Appl. Math..

[8]  P. Ramadge,et al.  Supervisory control of a class of discrete event processes , 1987 .

[9]  Adam Roman,et al.  Complexity of road coloring with prescribed reset words , 2019, J. Comput. Syst. Sci..

[10]  S. Golomb,et al.  Comma-Free Codes , 1958, Canadian Journal of Mathematics.

[11]  Jean-François Romeuf Shortest Path Under Rational Constraint , 1988, Inf. Process. Lett..

[12]  On A Class of Constrained Synchronization Problems in NP , 2020, ICTCS.

[13]  Balas K. Natarajan An algorithmic approach to the automated design of parts orienters , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[14]  Stefan Hoffmann Computational Complexity of Synchronization under Regular Commutative Constraints , 2020, COCOON.

[15]  Sven Sandberg,et al.  Homing and Synchronizing Sequences , 2004, Model-Based Testing of Reactive Systems.

[16]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[17]  Seh-Woong Jeong,et al.  Synchronizing sequences and symbolic traversal techniques in test generation , 1993, J. Electron. Test..

[18]  Michel Latteux,et al.  On Bounded Context-free Languages , 1984, J. Inf. Process. Cybern..

[19]  Seymour Ginsburg,et al.  BOUNDED REGULAR SETS , 1966 .

[20]  Gilles Pesant,et al.  A Regular Language Membership Constraint for Finite Sequences of Variables , 2004, CP.

[21]  Vladimir V. Gusev Synchronizing Automata of Bounded Rank , 2012, CIAA.

[22]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[23]  Benjamin Weiss,et al.  SIMILARITY OF AUTOMORPHISMS OF THE TORUS , 1970 .

[24]  David Eppstein,et al.  Reset Sequences for Monotonic Automata , 1990, SIAM J. Comput..

[25]  E. Shapiro,et al.  Programmable and autonomous computing machine made of biomolecules , 2001, Nature.

[26]  Volker Diekert Makanin's algorithm for solving word equations with regular constraints , 1998 .

[27]  Markus Lohrey,et al.  Automata Theory on Sliding Windows , 2017, STACS.

[28]  Sheng Yu Regular Languages , 1997, Handbook of Formal Languages.

[29]  I. K. Rystsov,et al.  Reset Words for Commutative and Solvable Automata , 1997, Theor. Comput. Sci..

[30]  S. Lafortune Supervisory Control Of Discrete Event Systems , 2011 .

[31]  Adam Roman,et al.  Complexity of Road Coloring with Prescribed Reset Words , 2015, LATA.

[32]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[33]  Mikhail V. Volkov,et al.  Synchronizing automata preserving a chain of partial orders , 2007, Theor. Comput. Sci..

[34]  Christos G. Cassandras,et al.  Introduction to Discrete Event Systems, Second Edition , 2008 .

[35]  P. L. Odell,et al.  Full Rank Factorization of Matrices , 1999 .

[36]  Charles Paperman,et al.  Topological Sorting with Regular Constraints , 2018, ICALP.

[37]  Dominique Perrin,et al.  Codes and Automata (Encyclopedia of Mathematics and its Applications) , 2009 .

[38]  Stephen R. Mahaney Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[39]  Volker Diekert,et al.  The existential theory of equations with rational constraints in free groups is PSPACE-complete , 2001, Inf. Comput..

[40]  A. N. Trahtman,et al.  The road coloring problem , 2007, 0709.0099.

[41]  Balas K. Natarajan,et al.  Some Paradigms for the Automated Design of Parts Feeders , 1989, Int. J. Robotics Res..

[42]  Jeffrey Shallit,et al.  Finding the Growth Rate of a Regular or Context-Free Language in Polynomial Time , 2010, Int. J. Found. Comput. Sci..

[43]  Stephen R. Mahaney Sparse Complete Sets of NP: Solution of a Conjecture of Berman and Hartmanis , 1982, J. Comput. Syst. Sci..

[44]  Henning Fernau,et al.  Problems on Finite Automata and the Exponential Time Hypothesis , 2016, CIAA.

[45]  Mikhail V. Volkov Synchronizing automata preserving a chain of partial orders , 2009, Theor. Comput. Sci..

[46]  Christophe Lecoutre Constraint Networks , 1992 .

[47]  W. Murray Wonham,et al.  Supervisory Control of Discrete-Event Systems , 2018 .

[48]  Martin Kutrib,et al.  Descriptional Complexity of Bounded Regular Languages , 2016, DCFS.

[49]  Mikhail V. Volkov,et al.  Synchronizing Automata and the Cerny Conjecture , 2008, LATA.

[50]  Volker Diekert,et al.  The existential theory of equations with rational constraints in free groups is PSPACE-complete , 2005, Inf. Comput..

[51]  S. Ginsburg,et al.  BOUNDED ALGOL-LIKE LANGUAGES^) , 1964 .

[52]  Doug Ierardi,et al.  The complexity of oblivious plans for orienting and distinguishing polygonal parts , 2005, Algorithmica.

[53]  Juris Hartmanis,et al.  On isomorphisms and density of NP and other complete sets , 1976, STOC '76.

[54]  Christophe Lecoutre,et al.  Constraint Networks: Techniques and Algorithms , 2009 .

[55]  C. Y. Hsieh,et al.  Some Algebraic Properties of Comma-Free Codes(Algebraic Theory of Codes and Related Topics) , 1989 .

[56]  Lucas V. R. Alves,et al.  Synchronism Recovery of Discrete Event Systems , 2020 .

[57]  Armin B. Cremers,et al.  Observations about bounded languages and developmental systems , 2005, Mathematical systems theory.

[58]  Umberto Eco,et al.  Theory of Codes , 1976 .

[59]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..